GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. LBA-5-LBA-5
    Abstract: Background: Higher-risk MDS and CMML comprise a spectrum of disorders associated with cytopenias, high risk of transformation to acute myeloid leukemia (AML), and truncated survival. Initial treatment with a hypomethylating agent such as azacitidine (AZA) is considered standard of care. Whether addition of the histone deacetylase inhibitor vorinostat (VOR), which acts synergistically with AZA to reactivate epigenetically silenced genes, or addition of lenalidomide (LEN), which impacts the bone marrow microenvironment, improves response rates compared to AZA monotherapy is unknown. Methods: This Phase II study (ClinTrials.gov # NCT01522976) randomized higher-risk MDS (International Prognostic Scoring System (IPSS) Int-2 or High and/or bone marrow blasts 〉 5%) and CMML patients (pts) with 〈 20% blasts to receive AZA (75 mg/m2/d on d1-7 of a 28d cycle), AZA + LEN (10 mg/d on d1-21), or AZA + VOR (300 mg BID on d3-9). Eligibility criteria included: 〉 18 years (yrs), no previous allogeneic transplant, no prior treatment with any of the study drugs, and adequate organ function; therapy-related (t)MDS was allowed. Pts continued treatment until disease progression, relapse, unacceptable toxicity, or lack of response. Dose reductions occurred for unresolved grade 〉 3 adverse events (per NCI CTCAE) or delayed count recovery. The primary endpoint was improvement in overall response rate (ORR), by intention to treat and reviewed centrally, of one of the combination arms vs. AZA monotherapy per 2006 International Working Group MDS response criteria (complete response (CR) + partial response (PR) + hematologic improvement (HI)). Relapse-free survival (RFS) was from time of response. The study had 81% power to detect a 20% improvement in ORR from 35% to 55%. Results: Of 282 pts enrolled from 3/12–6/14, 276 are included in analyses (6 ineligible pts excluded): 92 on the AZA arm, 93 on AZA+LEN, and 91 on AZA+VOR. Baseline characteristics were well-balanced across arms (Table). Pts received a median of 23 weeks of therapy: 25 of AZA; 24 of AZA+LEN; and 20 of AZA+VOR and were followed for a median of 9 months (range: 0-26). Numbers of pts with notable adverse events 〉 grade 3 for AZA:AZA+LEN:AZA+VOR included febrile neutropenia (10:13:13); gastrointestinal disorders (4:11:23); infections (2:3:3); and rash (2:12:1). Responses were assessable in 260 pts (94%). ORR for the entire cohort was 33%: 19% CR, 1% PR, and 13% HI, with a median RFS of 7 months. ORR was similar across study arms: 36% for AZA, 37% for AZA+LEN (p=1.0 vs. AZA), and 22% for AZA+VOR (p=.07 vs. AZA). CR/PR/HI rates across arms were also similar: 23%/0%/13% for AZA; 18%/1%/17% for AZA+LEN (CR p=.47 vs. AZA); and 14%/1%/7% for AZA+VOR (CR p=.18 vs. AZA); rates of bone marrow exams to assess response were 76%, 67%, and 73%, respectively. HI-P/HI-E/HI-N rates were 21%/15%/5% for AZA, 26%/14%/15% for AZA+LEN, and 12%/8%/4% for AZA+VOR. HI-N rates were higher in AZA+LEN vs. AZA (p=.05) but otherwise were similar across arms. Median time to best response across arms was 15 weeks in AZA, 16 weeks in AZA+LEN, and 16 weeks in AZA+VOR. ORR did not vary significantly across arms in subgroup analyses for tMDS, baseline red blood cell (RBC) transfusion dependence, and by IPSS risk group. ORR for CMML pts for AZA:AZA+LEN:AZA+VOR was 33%:53%(p=.15 vs. AZA):12%(p=.41 vs. AZA). Allogeneic transplantation rates were: 7 pts on AZA, 6 on AZA+LEN, and 9 on AZA+VOR. For AZA:AZA+LEN:AZA+VOR, median RFS was: 6:8:11 months (log-rank p=.3 for combination arms vs. AZA, Figure); and for pts on therapy 〉 6 months, it was 7:7.5:13 months (log-rank p=.11 for AZA+VOR, .74 for AZA+LEN vs. AZA). Conclusions: In higher-risk MDS pts, ORR was similar for AZA monotherapy compared to AZA-containing combination arms, though some subgroups may have benefitted from combination therapy. Differences in types of response may have resulted from differential rates of follow-up bone marrow assessments. While a non-significant signal of a DFS advantage for combination therapy was observed, longer-term outcome data are being assessed. Table Table. Figure Figure. Disclosures Sekeres: Boehringer-Ingelheim: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Off Label Use: lenalidomide, vorinostat for higher-risk MDS. List:Celgene Corporation: Consultancy. Gore:Celgene: Consultancy, Research Funding. Attar:Celgene: Consultancy. Erba:Seattle Genetics: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Consultancy, Research Funding; Incyte: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda Pharmaceuticals International Co.: Research Funding; Astellas Pharma: Research Funding; Celgene: Honoraria, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 24 ( 2017-08-20), p. 2745-2753
    Abstract: Azacitidine is standard, first-line therapy in higher-risk myelodysplastic syndromes (MDS). Whether azacitidine-based combinations with lenalidomide or vorinostat produce superior overall response rates (ORRs) to azacitidine is not known. Patients and Methods North American Intergroup Study S1117 is a phase II/III trial that randomly assigned patients with higher-risk MDS and chronic myelomonocytic leukemia (CMML) 1:1:1 to azacitidine (75 mg/m 2 /day on days 1 to 7 of a 28-day cycle); azacitidine plus lenalidomide (10 mg/day on days 1 to 21); or azacitidine plus vorinostat (300 mg twice daily on days 3 to 9). The primary phase II end point was improved ORR. Results Of 277 patients from 90 centers, 92 received azacitidine, 93 received azacitidine plus lenalidomide, and 92 received azacitidine plus vorinostat. Median age was 70 years (range, 28 to 93 years), 85 patients (31%) were female, and 53 patients (19%) had CMML. Serious adverse events were similar across arms, although combination-arm patients were more likely to undergo nonprotocol-defined dose modifications ( P 〈 .001).With a median follow-up of 23 months (range, 1 to 43 months), the ORR was 38% for patients receiving azacitidine, 49% for azacitidine plus lenalidomide ( P = .14 v azacitidine), and 27% for azacitidine plus vorinostat ( P = .16 v azacitidine). For patients with CMML, ORR was higher for azacitidine plus lenalidomide versus azacitidine (68% v 28%, P = .02) but similar for all arms across cytogenetic subgroups, as was remission duration and overall survival. ORR was higher with mutations in DNMT3A and lower for SRSF2, whereas ORR duration improved with fewer mutations. Lenalidomide dose reduction was associated with worse overall survival (hazard ratio, 1.30; P = .05). Conclusion Patients with higher-risk MDS treated with azacitidine-based combinations had similar ORR to azacitidine monotherapy, although patients with CMML benefitted from azacitidine plus lenalidomide. The efficacy of combination regimens may have been affected by dose modifications.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 908-908
    Abstract: Background: The few therapies available to treat higher-risk MDS and CMML have limited impact on outcome. We previously reported initial results of S1117, which compared overall response rates (ORRs) of azacitidine (AZA) monotherapy to AZA combined with the histone deacetylase inhibitor vorinostat (VOR), or the immunomodulator lenalidomide (LEN)( ASH 2014 LBA-5). We now report updated response data and overall survival (OS), subgroup analyses, impact of cytogenetics, and effect of treatment center volume/centers of excellence on outcome. Methods: This randomized, Phase II study (ClinTrials.gov # NCT01522976) enrolled higher-risk MDS (International Prognostic Scoring System (IPSS) Int-2 or High and/or bone marrow blasts ≥5%) and CMML adult patients (pts) with 〈 20% blasts from 3/12-6/14 to receive AZA (75 mg/m2/d on d1-7 of a 28d cycle), AZA + LEN (10 mg/d on d1-21), or AZA + VOR (300 mg BID on d3-9). Pts continued treatment until treatment failure, defined as disease progression, relapse, significant or unresolved toxicity, or lack of response. Dose reductions occurred for grade ≥3 adverse events (per NCI CTCAE) or delayed count recovery. Cytogenetic risk groups were defined per IPSS-R. The primary endpoint was improvement in ORR, by intention to treat and reviewed centrally, of one of the combination arms vs. AZA per 2006 International Working Group MDS response criteria (complete response (CR) + partial response (PR) + hematologic improvement (HI)). OS was from study entry. MDS Centers of Excellence (MCE) were defined per MDS Foundation; center volume was defined as low (1-4 pts enrolled) or high (5-17 pts). Results: Of 277 pts, 92 received AZA, 93 AZA+LEN, and 92 AZA+VOR. Baseline characteristics, previously reported, were similar across arms. Pts received a median of 22 weeks of therapy and were followed for a median of 10 months (range: 0-30). Non-protocol defined dose modification and protocol discontinuation due to toxicity occurred more frequently in combination arms vs. AZA (p=.0014 and p=.018, respectively). Responses are now assessable in all pts (Table 1). ORR was statistically similar for combination arms vs. AZA, with a trend for longer response duration (p=.083) for combinations. Within HI, AZA+LEN pts had higher HI-n than AZA pts (16% vs. 5%, p=.031). ORR for CMML pts was significantly higher for LEN+AZA vs. AZA (63% vs. 29%, p=.04), with a trend for longer response duration for combinations (p=.06); no differences in ORR were seen for therapy-related MDS, IPSS subgroups, or transfusion-dependent pts. Allogeneic transplantation rates were similar. Median OS (Figure) for AZA:AZA+LEN:AZA+VOR was 15:18 (p=.38):17 (p=.17) months; p=.19 for combination arms vs. AZA. Median OS after failure was 7:9 (p=.6):9 (p=.05) months; p=.15 for combination arms after failure vs. AZA. For pts on therapy 〉 6 months, there was a trend (p=.08) for higher ORR for AZA+LEN vs. AZA, though response duration was similar; median OS was 18:21 (p=.44 vs. AZA):21 months (p=.45 vs. AZA). Cytogenetic risk category distribution and ORR was similar across arms. OS (compared to Very Good/Good) was worse for Poor (HR 2.07, p=.022) and Very poor (HR 4.41, p 〈 .001), without significant modification by treatment arm (Table 2). Compared to pts without identified cytogenetic abnormalities (abn), ORR across arms was better for pts with Chr 5 abn (OR 2.38, p=.004); OS was better for normal (HR .42, p 〈 .001) and worse for Chr 5 abn (HR 3.1, p 〈 .001), -7 (HR 2.69, p 〈 .001), and 17p (HR 2.61, p 〈 .001). While small numbers prevented definitive conclusions for treatment arm effect, combinations trended towards improving OS in Normal and Chr 5 abn only. The outcome of all pts and pts on discrete study arms treated at MCE (n=75) or high volume (n=138) sites were similar to non-MCE or low-volume sites for ORR, non-protocol defined dose modifications, dose adjustment in first 4 cycles, time to off-protocol (HR 1.2, p=.21 and HR .94, p=.64), and OS (HR .81, p=.3 and HR .77, p=.12). Conclusions: In higher-risk MDS pts, ORR and OS was similar for AZA monotherapy compared to combination arms, while for CMML pts, ORR was significantly higher with AZA+LEN. For cytogenetic subgroups, OS was worse for Chr 5 abn, -7, and 17p, and may be improved by combinations in normal or Chr 5 abn. MCE or treatment at a high volume site did not impact these effects or outcomes. Figure 1. Responses Figure 1. Responses Figure 2. Cytogenetics Figure 2. Cytogenetics Figure 3. Figure 3. Disclosures Sekeres: Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. List:Celgene Corporation: Honoraria, Research Funding. Odenike:Sunesis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Stone:Merck: Consultancy; Celgene: Consultancy. Gore:Celgene: Consultancy, Honoraria, Research Funding. Buckstein:Celgene: Honoraria, Research Funding. Fang:Affymetrix: Research Funding. Attar:Agios Pharmaceuticals: Employment. Erba:Ariad: Consultancy; Daiichi Sankyo: Consultancy; Sunesis: Consultancy; Pfizer: Consultancy; Novartis: Consultancy, Speakers Bureau; Pfizer: Consultancy; Incyte: Consultancy, Speakers Bureau; Incyte: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Jannsen (J & J): Other: Data Safety and Monitoring Committees ; Ariad: Consultancy; Celgene: Consultancy, Speakers Bureau; GlycoMimetics: Other: Data Safety and Monitoring Committees; Seattle Genetics: Consultancy, Research Funding; Seattle Genetics: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Millennium/Takeda: Research Funding; Millennium/Takeda: Research Funding; Celator: Research Funding; Celator: Research Funding; Astellas: Research Funding; Astellas: Research Funding; Sunesis: Consultancy; Daiichi Sankyo: Consultancy; GlycoMimetics: Other: Data Safety and Monitoring Committees; Jannsen (J & J): Other: Data Safety and Monitoring Committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...