GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 47-47
    Abstract: While there are several small molecule, gene therapy, and gene editing approaches for treating sickle cell disease (SCD), these strategies do not result in the direct elimination of the causative sickle β-globin (HbS) variant itself. The reduction or complete removal of this pathologic globin variant and expression of normal β-hemoglobin (HbB) or other non-polymerizing β-globin variant may increase the likelihood of beneficial outcomes for SCD patients. Adenine base editors (ABEs) can precisely convert the mutant A-T base pair responsible for SCD to a G-C base pair, thus generating the hemoglobin variant, Hb G-Makassar, a naturally occurring β-globin variant that is not associated with human disease. Our studies have identified ABEs that can achieve highly efficient Makassar editing ( & gt;70%) of the sickle mutation in both sickle trait (HbAS) and homozygous sickle (HbSS) patient CD34+ cells with high cell viability and recovery and without perturbation of immunophenotypic hematopoietic stem and progenitor cell (HSPC) frequencies after ex vivo delivery of guide RNA and mRNA encoding the ABE. Furthermore, Makassar editing was retained throughout erythropoiesis in bulk in vitro erythroid differentiated cells (IVED) derived from edited CD34+ cells. To gain an understanding of allelic editing at a single clone resolution, we assessed editing frequencies of clones from both single cell expansion in erythroid differentiation media, as well as from single BFU-E colonies. We found that we could achieve & gt;70% of colonies with bi-allelic Makassar editing and approximately 20% of colonies with mono-allelic Makassar editing, while & lt;3% of colonies remained completely unedited. Previously, conventional hemoglobin capillary electrophoresis and high-performance liquid chromatography (HPLC) were unable to distinguish between HbS and HbG-Makassar. Here, we developed an ultra-high-performance liquid chromatography (UPLC) method that resolves sickle globin (HbS) from Hb G-Makassar globin in IVED cells. The Makassar globin variant was further confirmed by liquid chromatography mass spectrometry (LC-MS). By developing this new method to resolve these two β-globin variants in edited HbSS cells, we were able to detect, in bulk IVED cultures, & gt;80% abundance Hb G-Makassar of total β-globins, which corresponded to a concomitant reduction of HbS levels to & lt;20%. Furthermore, we were also able to determine globin abundance as well as allelic editing at the level of single clones and found that HbS was completely eliminated in & gt;70% of cells that had bi-allelic Makassar editing. Moreover, in the approximately 20% of colonies that were found to be mono-allelically edited for the Makassar variant, there was a 60:40 ratio of Hb G-Makassar:HbS globin abundance in individual clones, at levels remarkably similar to the HbA(wildtype HbB):HbS levels found in HbAS individuals, with minimal observable in vitro sickling when exposed to hypoxia. Thus, with our ABEs, we were able to reduce HbS to & lt;40% on a per cell basis in & gt;90% of IVED cells and found that in vitro sickling under hypoxia inversely correlated with the level of Hb G-Makassar globin variant installation and corresponding reduction in HbS levels. By converting HbS to Hb G-Makassar, our direct and precise editing strategy replaces a pathogenic β-globin with one that has been shown to have normal hematologic parameters. Coupled with autologous stem cell transplant, this next generation gene editing strategy presents a promising new modality for treating patients with SCD. Disclosures Chu: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lam:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Packer:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Olins:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Liquori:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Marshall:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lee:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Yan:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Decker:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gantzer:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Haskett:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Bohnuud:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Born:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Barrera:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Slaymaker:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gaudelli:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Hartigan:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Ciaramella:Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 593, No. 7859 ( 2021-05-20), p. 429-434
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 38, No. 7 ( 2020-07), p. 892-900
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3352-3352
    Abstract: Sickle cell disease (SCD) and Beta thalassemia are disorders of beta globin production and function that lead to severe anemia and significant disease complications across a multitude of organ systems. Autologous transplantation of hematopoietic stem cells engineered through the upregulation of fetal hemoglobin (HbF) or correction of the beta globin gene have the potential to reduce disease burden in patients with beta hemoglobinopathies. Base editing is a recently developed technology that enables precise modification of the genome without the introduction of double strand DNA breaks. Gamma globin gene promoters were comprehensively screened with cytosine and adenine base editors (ABE) for the identification of alterations that would derepress HbF. Three regions were identified that significantly upregulated HbF, and the most effective nucleotide residue conversions are supported by natural variation seen in patients with hereditary persistence of fetal hemoglobin (HPFH). ABEs have been developed that significantly increase the level of HbF following nucleotide conversion at key regulatory motifs within the HBG1 and HBG2 promoters. CD34+ hematopoietic stem and progenitor cells (HSPC) were purified at clinical scale and edited using a process designed to preserve self-renewal capacity. Editing at two independent sites with different ABEs reached 94 percent and resulted in up to 63 percent gamma globin by UPLC. The levels of HbF observed should afford protection to the majority of SCD and Beta thalassemia patients based on clinical observations of HPFH and non-interventional therapy that links higher HbF dosage with milder disease (Ngo et al, 2011 Brit J Hem; Musallam et al, 2012 Blood). Directly correcting the Glu6Val mutation of SCD has been a recent goal of genetic therapies designed for the SCD population. Current base editing technology cannot yet convert mutations like those that result from the A-T transversion in sickle beta globin; however, ABE variants have been designed to recognize and edit the opposite stranded adenine residue of valine. This results in the conversion of valine to alanine and the production of a naturally occurring variant known as Hb G-Makassar. Beta globin with alanine at this position does not contribute to polymer formation, and patients with Hb G-Makassar present with normal hematological parameters and red blood cell morphology. SCD patient fibroblasts edited with these ABE variants achieve up to 70 percent conversion of the target adenine. CD34 cells from healthy donors were then edited with a lead ABE variant, targeting a synonymous mutation in an adjacent proline that resides within the editing window and serves as a proxy for editing the SCD mutation. The average editing frequency was 40 percent. Donor myeloid chimerism documented at these levels in the allogeneic transplant setting exceeds the 20 percent that is required for reversing the sickle phenotype (Fitzhugh et al, 2017 Blood). These next generation editing approaches provide a promising new modality for treating patients with Beta thalassemia and SCD. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 951-951
    Abstract: Conversion of the pathogenic sickle allele to a naturally occurring, non-pathogenic hemoglobin variant, Hb G-Makassar, represents a long-term and durable treatment strategy for sickle cell disease (SCD). Using our engineered adenine base editor, we achieved highly efficient base editing in mobilized sickle trait (HbAS) and non-mobilized homozygous sickle (HbSS) CD34 + cells that led to & gt;70% conversion of sickle allele to Makassar allele in in vitro erythroid differentiated (IVED) cells derived from ex vivo edited CD34 + cells. At this level of editing, & gt;70% bi-allelic Makassar editing could be achieved in HbSS IVED cells, with ~20% of cells being mono-allelically Makassar edited. These mono-allelically edited cells behaved similarly to sickle trait (HbAS) cells, when exposed to hypoxic conditions in vitro. In vivo proof of concept xenotransplantation studies demonstrated that Makassar edited HbAS CD34 + cells achieved long-term, multi-lineage hematopoietic engraftment as well as Makassar globin protein expression in human erythroid glycophorin A + cells in thebone marrow of immunocompromised mice. Although the Makassar variant is naturally occurring in human genetics and present in individuals in Southeast Asia with normal hematologic parameters in both heterozygous and homozygous states, we sought to further characterize Makassar hemoglobin and assess its biophysical and biochemical properties. Recombinant Makassar globin was co-expressed with alpha globin in E. coli and tetramers were purified to homogeneity. Recombinant tetramers were assessed for identity, purity, globin content, and heme content demonstrating comparability to hemoglobin tetramers isolated from primary sources (whole blood). Several characterization methods were employed, to assess size, molecular weight, oligomerization state, tetramer composition, and oxygen binding properties. These studies indicated Makassar globin could properly assemble into hemoglobin tetramers, displaying biochemical properties characteristic of hemoglobins. Furthermore, we assessed polymerization potential using a temperature jump method previously employed for kinetic measurements of sickle-fiber formation and found Makassar hemoglobin did not polymerize in vitro under conditions where sickle hemoglobin (HbS) readily polymerizes, consistent with behavior observed previously by others. Finally, a crystal structure of Hb G-Makassar has been determined at the 2.2 Å resolution and showed high similarity to the HbA (wildtype hemoglobin) structure with a RMSD of 0.385 Å for all the Cα atoms, which indicates that the glutamic acid to alanine (E6A) substitution in beta-hemoglobin does not seem to induce any significant conformational change in hemoglobin structures. Altogether, our biophysical and biochemical characterization shows that the Makassar variant behaves as a functional hemoglobin. By replacing the pathogenic sickle globin with a benign hemoglobin variant with normal function, our base editing approach provides a promising autologous investigational cell therapy for the treatment of SCD. Disclosures Chu: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Ortega: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Feliciano: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Winton: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Xu: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Haupt: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company. McDonald: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Martinez: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Liquori: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Marshall: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Lam: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Olins: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Rinaldi: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Rehberger: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Lazarra: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Decker: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Gantzer: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Bohnuud: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Born: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Barrera: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Yan: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Slaymaker: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company, Patents & Royalties. Packer: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Smith: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Zambonelli: Beam Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Lee: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Gaudelli: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Hartigan: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of stock options in a privately-held company. Ciaramella: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...