GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Physics of Plasmas, AIP Publishing, Vol. 19, No. 9 ( 2012-09-01)
    Abstract: The negative polarity rod pinch diode (NPRPD) is a potential millimeter spot size radiography source for high voltage generators (4 to 8 MV) [Cooperstein et al., “Considerations of rod-pinch diode operation in negative polarity for radiography,” in Proceedings of the 14th IEEE Pulsed Power Conference, 2003, pp. 975–978]. The NPRPD consists of a small diameter (few mm) cylindrical anode extending from the front end of the vacuum cell through a thin annular cathode, held by a central conductor. The polarity has been inverted when compared to the original rod pinch diode [Cooperstein et al., “Theoretical modeling and experimental characterization of a rod-pinch diode,” Phys. Plasmas 8(10), 4618–4636 (2001)] in order to take advantage from the maximal x-ray emission toward the anode holder at such a voltage [Swanekamp et al., “Evaluation of self-magnetically pinched diodes up to 10 MV as high resolution flash X-ray sources,” IEEE Trans. Plasma Sci. 32(5), 2004–2016 (2004). We have studied this diode at 4.5 MV, driven by the ASTERIX generator [Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference, 1989, pp. 567–570.] . This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode has been modified in order to set up flash a radiographic diode [Etchessahar et al., “Negative polarity rod pinch diode experiments on the ASTERIX generator,” in Conference Records–Abstracts, 37th IEEE International Conference on Plasma Science, 2010]. The experiments and numerical simulations presented here allowed the observation and analysis of various physical phenomena associated with the diode operation. Also, the influence of several experimental parameters, such as cathode and anode diameters, materials and surface states, was examined. In order to achieve the most comprehensive characterization of the diode, both optical and x-ray diagnostics were used, including high speed multi-image ICCD (intensified CCD) cameras, streak camera, dosimeters, spot size measurements, and pinhole cameras. A set of new results have been obtained through this study. The plasma emission from the anode and cathode surfaces and its expansion appear to be critical for the diode functioning. Also, for the first time, potential sources of diode instability were identified. Finally, an optimal and stable diode configuration was found with the following parameters: 52 rad at 1 m (in Al) and 2.2 mm spot size.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physics, AIP Publishing, Vol. 120, No. 12 ( 2016-09-28)
    Abstract: This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm−3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Physics of Plasmas, AIP Publishing, Vol. 23, No. 10 ( 2016-10-01)
    Abstract: Quantification of electromagnetic stresses on electronic systems, following irradiation of the air by ionizing radiations, requires a thorough study of the plasma generated. In this work, the temporal evolution of non-equilibrium air plasmas self-induced by energetic X-rays is experimentally and theoretically investigated at atmospheric pressure. Time resolved electron density measurements are based on transmission measurements of an electromagnetic wave in the microwave range. The electromagnetic wave is launched into a wave guide, which is irradiated by a high flux of multi-MeV pulsed X-rays. For different X-ray fluxes, the electron density is determined from the comparison between the transmitted microwave signal at the waveguide output, and the result of the calculation of the propagation of an electromagnetic wave through time varying plasma contained in a waveguide. These measurements require a priori assumptions on electron temperature, which is obtained and confirmed by a reaction kinetics model of the evolution of the electron energy and the densities of the different humid air plasma species inside the waveguide. The considered chemical kinetics scheme involves 39 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 265 selected reactions. A good agreement is observed between the calculated and measured time evolution of the transmitted signal for specific profiles of electron energy and density. In our experiments, the maximum electron density is of the order of few 1012 cm−3, for a mean electron energy of about 0.5 eV. For doses range from 3 Gy to 21 Gy, the discrepancies between the measurements and the model for the maximum of the electron density are within a factor of 2.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics of Plasmas, AIP Publishing, Vol. 20, No. 11 ( 2013-11-01)
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Physics of Plasmas, AIP Publishing, Vol. 20, No. 10 ( 2013-10-01)
    Abstract: The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570] . This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size ( & lt;3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode plasmas evolution, responsible for the gap closure.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...