GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (3)
  • Garrett, Nigel  (3)
  • 2020-2024  (3)
Material
Publisher
  • Springer Science and Business Media LLC  (3)
Language
Years
  • 2020-2024  (3)
Year
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2024-03-11)
    Abstract: In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe–critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p 〈 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p 〈 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p 〈 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe–critical COVID-19 was stable across most sequence features but lower against the most distant viruses.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Archives of Virology Vol. 165, No. 11 ( 2020-11), p. 2439-2452
    In: Archives of Virology, Springer Science and Business Media LLC, Vol. 165, No. 11 ( 2020-11), p. 2439-2452
    Abstract: New HIV infections continue relentlessly in southern Africa, demonstrating the need for a vaccine to prevent HIV subtype C. In South Africa, the country with the highest number of new infections annually, HIV vaccine research has been ongoing since 2003 with collaborative public-private-philanthropic partnerships. So far, 21 clinical trials have been conducted in South Africa, investigating seven viral vectors, three DNA plasmids, four envelope proteins, five adjuvants and three monoclonal antibodies. Active vaccine candidates have spanned subtypes A, B, C, E and multi-subtype mosaic sequences. All were well tolerated. Four concepts were investigated for efficacy: rAd5-gag/pol/nef showed increased HIV acquisition in males, subtype C ALVAC/gp120/MF59 showed no preventative efficacy, and the trials for the VRC01 monoclonal antibody and Ad26.Mos4.HIV/subtype C gp140/ aluminum phosphate are ongoing. Future trials are planned with DNA/viral vector plus protein combinations in concert with pre-exposure prophylaxis, and sequential immunization studies with transmitted/founder HIV envelope to induce broadly neutralizing antibodies. Finally, passive immunization trials are underway to build on the experience with VRC01, including single and combination antibody trials with an antibody derived from a subtype-C-infected South African donor. Future consideration should be given to the evaluation of novel strategies, for example, inactivated-whole-virus vaccines.
    Type of Medium: Online Resource
    ISSN: 0304-8608 , 1432-8798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1458460-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: npj Vaccines, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2023-08-12)
    Abstract: Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.
    Type of Medium: Online Resource
    ISSN: 2059-0105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2882262-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...