GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Garg, Vanika  (2)
  • Kumar, C. V. Sameer  (2)
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-05-15)
    Abstract: Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F 2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F 2 , respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining 〉 10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs ( qFW11 . 1 , qFW11 . 2 and qFW11 . 3 ) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-01-14)
    Abstract: The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits in pigeonpea is poorly understood. Accordingly, five F 2 populations segregating for SPC and four agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering (DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five populations. Major effect (PVE ≥ 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs and E-QTLs explained the genetic basis of the significant (P  〈  0.05) correlations of SPC with SW, SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the simultaneous improvement of SPC and other important traits.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...