GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
  • Gao, Jing  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2019
    In:  American Journal of Physiology-Cell Physiology Vol. 317, No. 5 ( 2019-11-01), p. C932-C941
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 317, No. 5 ( 2019-11-01), p. C932-C941
    Abstract: Exosome secretion is an important paracrine way of endothelial progenitor cells (EPCs) to modulate resident endothelial cells. The osteocalcin (OCN)-expressing EPCs have been found to be increased in cardiovascular disease patients and are considered to be involved in the process of coronary atherosclerosis. Since OCN has been proven to prevent endothelial dysfunction, this study aimed to evaluate the effect of exosomes derived from OCN-overexpressed EPCs on endothelial cells. Exosomes derived from EPCs (Exos) and OCN-overexpressed EPCs (OCN-Exos) were isolated and incubated with rat aorta endothelial cells (RAOECs) with or without the inhibition of OCN receptor G protein-coupled receptor family C group 6 member A (GPRC6A). The effects of exosomes on the proliferation activity of endothelial cells were evaluated by CCK-8 assay, and the migration of endothelial cells was detected by wound healing assay. A tube formation assay was used to test the influence of exosomes on the angiogenesis performance of endothelial cells. Here, we presented that OCN was packed into Exos and was able to be transferred to the RAOECs via exosome incorporation, which was increased in OCN-Exos groups. Compared with Exos, OCN-Exos had better efficiency in promoting RAOEC proliferation and migration and tube formation. The promoting effects were impeded after the inhibition of GPRC6A expression in RAOECs. These data suggest that exosomes from OCN-overexpressed EPCs have a beneficial regulating effect on endothelial cells, which involved enhanced OCN-GPRC6A signaling.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2002
    In:  American Journal of Physiology-Renal Physiology Vol. 282, No. 4 ( 2002-04-01), p. F608-F617
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 282, No. 4 ( 2002-04-01), p. F608-F617
    Abstract: Tamm-Horsfall protein (THP), the most abundant urinary protein synthesized by the kidney epithelial cells, is believed to play important and diverse roles in the urinary system, including renal water balance, immunosuppression, urinary stone formation, and inhibition of bacterial adhesion. In the present study, we describe the isolation of a 9.3-kb, 5′-region of the mouse THP gene and show the highly conserved nature of its proximal 589-bp, 5′-flanking sequence with that in rats, cattle, and humans. We also demonstrate using the transgenic mouse approach that a 3.0-kb, proximal 5′-flanking sequence is sufficient to drive the kidney-specific expression of a heterologous reporter gene. Within the kidney, transgene expression was confined to the renal tubules that endogenously expressed the THP protein, which suggests specific transgene activity in the thick ascending limb of the loop of Henle and early distal convoluted tubules. Our results establish the kidney- and nephron-segment-specific expression of the mouse THP gene. The availability of the mouse THP gene promoter that functions in vivo should facilitate additional studies of the molecular mechanisms of kidney-specific gene regulation and should provide new molecular tools for better understanding renal physiology and disease through nephron-specific gene targeting.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2002
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...