GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-017-LB-017
    Abstract: Metabolic genes are increasingly recognized as targets of somatic genetic alteration in human cancer often leading to profound changes in intracellular metabolite concentrations. 5-Methylthioadenosine Phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that metabolizes methylthioadenosine (MTA) to adenine and methionine. Its chromosomal position proximal to CDKN2A results in frequent collateral homozygous deletion in a wide range of human cancers. By interrogating data from a large scale deep-coverage pooled shRNA screen across 390 cancer cell line models we found that the viability of MTAP null cancer cells is strongly impaired upon shRNA-mediated depletion of the protein arginine methyltransferase PRMT5. In MTAP deleted cells there is marked accumulation of the substrate MTA and surprisingly, we find that MTA is a specific inhibitor of the catalytic activity of PRMT5. In keeping with these data, knockout of MTAP in an MTAP-proficient cell line led to increased MTA levels and rendered them sensitive to PRMT5 depletion. Moreover, reconstitution of MTAP in an MTAP-deficient cell line fully rescued PRMT5 dependence. Collectively, these findings indicate that the collateral loss of MTAP in CDNK2A deleted cancers leads to accumulation of MTA that thereby creates a hypomorphic PRMT5 state that is selectively sensitized towards further PRMT5 inhibition. Citation Format: Konstantinos Mavrakis, E Robert McDonald III, Michael R. Schlabach, Eric Billy, Gregory R. Hoffman, Antoine deWeck, David A. Ruddy, Kavitha Venkatesan, Greg McAllister, Rosalie deBeaumont, Samuel Ho, Yue Liu, Yan Yan-Neale, Guizhi Yang, Fallon Lin, Hong Yin, Hui Gao, David Randal Kipp, Songping Zhao, Joshua T. McNamara, Elizabeth R. Sprague, Young Shin Cho, Justin Gu, Ken Crawford, Vladimir Capka, Kristen Hurov, Jeffrey A. Porter, John Tallarico, Craig Mickanin, Emma Lees, Raymond Pagliarini, Nicholas Keen, Tobias Schmelzle, Francesco Hofmann, Frank Stegmeier, William R. Sellers. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to marked dependence on PRMT5. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-017.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 351, No. 6278 ( 2016-03-11), p. 1208-1213
    Abstract: 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A . By interrogating data from a large-scale short hairpin RNA–mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP–deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...