GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Vacuum Society ; 2004
    In:  Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena Vol. 22, No. 6 ( 2004-11-01), p. 2885-2890
    In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, American Vacuum Society, Vol. 22, No. 6 ( 2004-11-01), p. 2885-2890
    Abstract: Electron projection lithography (EPL) is a realistic technology for the 65nm node and below, as a complementary technology of optical lithography especially for contacts and gate layers because of its high resolution and large process margin. Nikon has developed an EPL exposure tool as an electron-beam (EB) stepper and the first generation EB stepper; NSR-EB1A is now almost completed as an R & D tool for the 65nm technology node. Using a ϕ200mm reticle, a 20mm×25mm exposure field is realized. Full-field exposure performance of NSR-EB1A is shown. A 70nm isolated line and 1:1 nested lines are simultaneously resolved, as are 50nm 1:2 nested lines. 60nm contact holes are resolved with a depth of focus over a 10μm range and dosage window over ±6%. Stitching accuracy is about 20nm (3σ) and the single machine overlay is about 30nm (mean + 3σ). These data mean sufficient performance for device manufacturing of the 65nm technology node. The concept of a large subfield is one candidate for resolution and throughput enhancement in EPL production tool. The Coulomb blur is directly measured by an aerial image sensor for a large subfield and small beam half-angle, and the data show good agreement with simulations. It is shown that throughput over 20 wafers per hour (ϕ300mm) is realistic and achievable in a production tool of a 45nm technology node.
    Type of Medium: Online Resource
    ISSN: 1071-1023 , 1520-8567
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2004
    detail.hit.zdb_id: 3117331-7
    detail.hit.zdb_id: 3117333-0
    detail.hit.zdb_id: 1475429-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Vacuum Society ; 2003
    In:  Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena Vol. 21, No. 6 ( 2003-11-01), p. 2686-2690
    In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, American Vacuum Society, Vol. 21, No. 6 ( 2003-11-01), p. 2686-2690
    Abstract: Electron projection lithography (EPL) is one of the promising technologies below the 65 nm node, especially for contact hole and gate layers. Nikon is developing an EPL exposure tool as an electron beam (EB) stepper and the first generation EB stepper is now being manufactured. The voltage of 100 kV is adopted for electron beam acceleration. The subfield size is 0.25 mm×0.25 mm on the wafer and the deflection width of the electron beam is 5 mm on the wafer. The magnification of the projection optics is 1/4. A 5 mm×25 mm area from the φ200 mm reticle can be exposed by the combination of beam deflection and stage scanning motion (dynamic exposure). This area is called “a mechanical stripe.” After one mechanical stripe exposure, the reticle and wafer stages turn around and the next exposure of the adjacent mechanical stripe starts as a scan and stitch stage motion. Finally, a 20 mm×25 mm exposure field from the φ200 mm reticle is exposed. We report the first dynamic exposure in the history of EPL although only a φ100 mm reticle was used. A 5 mm×10 mm area was used as the mechanical stripe and 10 mm×10 mm exposure fields were exposed. 100 nm nested lines were resolved in the entire exposure field and stitching accuracies of 17–18 nm (3σ) are obtained. There remain systematic errors, and stitching accuracy less than 15 nm will be achieved after fine adjustment of the subfield positions. We feel the reality of EPL is now sufficiently proven.
    Type of Medium: Online Resource
    ISSN: 1071-1023 , 1520-8567
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2003
    detail.hit.zdb_id: 3117331-7
    detail.hit.zdb_id: 3117333-0
    detail.hit.zdb_id: 1475429-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...