GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • Fujiwara, Masateru  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 1
    In: Journal of Radiation Research, Oxford University Press (OUP), ( 2021-09-24)
    Abstract: A microSilicon™ (PTW type 60023), a new unshielded diode detector succeeding Diode E (model 60017, PTW), was characterized for electron beam dosimetry and compared with other detectors. Electron beams generated from a TrueBeam linear accelerator were measured using the microSilicon, Diode E, and microDiamond synthetic single-crystal diamond detector. Positional accuracy of microSilicon was measured by data collected in air and water. The percent depth dose (PDD), off-center ratio (OCR), dose–response linearity, dose rate dependence, and cone factors were evaluated. The PDDs were compared with data measured using a PPC40 plane-parallel ionization chamber. The maximum variations of depth of 50% and 90% of the maximum dose, and practical depth among all detectors and energies were 0.9 mm. The maximum variations of the bremsstrahlung dose among all detectors and energies were within 0.3%. OCR showed good agreement within 1% for the flat and tail regions. The microSilicon detector showed a penumbra width similar to microDiamond, whereas Diode E showed the steepest penumbra shape. All detectors showed good dose–response linearity and stability against the dose rate; only Diode E demonstrated logarithmic dose rate dependency. The cone factor measured with microSilicon was within ±1% for all energies and cone sizes. We demonstrated that the characteristics of microSilicon is suitable for electron beam dosimetry. The microSilicon detector can be a good alternative for electron beam dosimetry in terms of providing an appropriate PDD curve without corrections, high spatial resolution for OCR measurements and cone factors.
    Type of Medium: Online Resource
    ISSN: 0449-3060 , 1349-9157
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2038914-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Radiation Research, Oxford University Press (OUP), Vol. 61, No. 3 ( 2020-05-22), p. 410-418
    Abstract: This study characterized a new unshielded diode detector, the microSilicon (model 60023), for small-field photon beam dosimetry by evaluating the photon beams generated by a TrueBeam STx and a CyberKnife. Temperature dependence was evaluated by irradiating photons and increasing the water temperature from 11.5 to 31.3°C. For Diode E, microSilicon, microDiamond and EDGE detectors, dose linearity, dose rate dependence, energy dependence, percent-depth-dose (PDD), beam profiles and detector output factor (OFdet) were evaluated. The OFdet of the microSilicon detector was compared to the field output factors of the other detectors. The microSilicon exhibited small temperature dependence within 0.4%, although the Diode E showed a linear variation with a ratio of 0.26%/°C. The Diode E and EDGE detectors showed positive correlations between the detector reading and dose rate, whereas the microSilicon showed a stable response within 0.11%. The Diode E and microSilicon demonstrated negative correlations with the beam energy. The OFdet of microSilicon was the smallest among all the detectors. The maximum differences between the OFdet of microSilicon and the field output factors of microDiamond were 2.3 and 1.6% for 5 × 5 mm2 TrueBeam and 5 mm φ CyberKnife beams, respectively. The PDD data exhibited small variations in the dose fall-off region. The microSilicon and microDiamond detectors yielded similar penumbra widths, whereas the other detectors showed steeper penumbra profiles. The microSilicon demonstrated favorable characteristics including small temperature and dose rate dependence as well as the small spatial resolution and output factors suitable for small field dosimetry.
    Type of Medium: Online Resource
    ISSN: 0449-3060 , 1349-9157
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2038914-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...