GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Freitag, H. Paul  (2)
  • 2010-2014  (2)
Material
Language
Years
  • 2010-2014  (2)
Year
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Atmospheric and Oceanic Technology Vol. 29, No. 6 ( 2012-06-01), p. 834-845
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 29, No. 6 ( 2012-06-01), p. 834-845
    Abstract: The common use of remotely located, buoy-mounted capacitance rain gauges in the tropical oceans for satellite rainfall verification studies provides motivation for an in situ gauge bias assessment. A comparison of the biases in rainfall catchment between Pacific island tipping-bucket rain gauges and capacitance rain gauges mounted on moored buoys in the tropical Pacific is conducted using the relationship between the fractional time in rain and monthly rainfall. This study utilizes the widespread spatial homogeneity of this relationship in the tropics to assess the rain catchment of both types of gauges at given values for the fractional time in rain. The results indicate that the capacitance gauges are not statistically significantly biased relative to the island-based tipping-bucket gauges. In addition, given the relatively small error bounds about the bias estimates any real bias differences among all the tested gauges are likely to be quite small compared to monthly rainfall totals. Underestimates resulting from wind biases, which may be substantial, are not documented in this paper.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Atmospheric and Oceanic Technology Vol. 30, No. 7 ( 2013-07-01), p. 1414-1432
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 30, No. 7 ( 2013-07-01), p. 1414-1432
    Abstract: Long-term and direct measurements of surface shortwave radiation (SWR) have been recorded by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) since 1997. Previous studies have shown that African dust, transported westward from the Sahara and Sahel regions, can accumulate on mooring SWR sensors in the high-dust region of the North Atlantic (8°–25°N, 20°–50°W), potentially leading to significant negative SWR biases. Here dust-accumulation biases are quantified for each PIRATA mooring using direct measurements from the moorings, combined with satellite and reanalysis datasets and statistical models. The SWR records from five locations in the high-dust region (8°, 12°, and 15°N along 38°W; 12° and 21°N along 23°W) are found to contain monthly-mean accumulation biases as large as −200 W m−2 and record-length mean biases on the order of −10 W m−2. The other 12 moorings, located mainly between 10°S and 4°N, are in regions of lower atmospheric dust concentration and do not show statistically significant biases. Seasonal-to-interannual variability of the accumulation bias is found at all locations in the high-dust region. The moorings along 38°W also show decreasing trends in the bias magnitude since 1998 that are possibly related to a corresponding negative trend in atmospheric dust concentration. The dust-accumulation biases described here will be useful for interpreting SWR data from PIRATA moorings in the high-dust region. The biases are also potentially useful for quantifying dust deposition rates in the tropical North Atlantic, which at present are poorly constrained by satellite data and numerical models.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...