GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cold Spring Harbor Laboratory  (3)
  • Frankish, Adam  (3)
  • 1
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 22, No. 9 ( 2012-09), p. 1698-1710
    Abstract: Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon–exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon–exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ∼11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2012
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 22, No. 9 ( 2012-09), p. 1760-1774
    Abstract: The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2012
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 19, No. 7 ( 2009-07), p. 1316-1323
    Abstract: Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2009
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...