GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecological Modelling, Elsevier BV, Vol. 222, No. 14 ( 2011-7), p. 2512-2523
    Type of Medium: Online Resource
    ISSN: 0304-3800
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 191971-4
    detail.hit.zdb_id: 2000879-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ocean Science, Copernicus GmbH, Vol. 14, No. 5 ( 2018-10-12), p. 1223-1245
    Abstract: Abstract. There is a general scarcity of oceanic observations that concurrently examine air–sea interactions, coastal–open-ocean processes and physical–biogeochemical processes, in appropriate spatiotemporal scales and under continuous, long-term data acquisition schemes. In the Mediterranean Sea, the resulting knowledge gaps and observing challenges increase due to its oligotrophic character, especially in the eastern part of the basin. The oligotrophic open Cretan Sea's biogeochemistry is considered to be representative of a greater Mediterranean area up to 106 km2, and understanding its features may be useful on even larger oceanic scales, since the Mediterranean Sea has been considered a miniature model of the global ocean. The spatiotemporal coverage of biogeochemical (BGC) observations in the Cretan Sea has progressively increased over the last decades, especially since the creation of the POSEIDON observing system, which has adopted a multiplatform, multivariable approach, supporting BGC data acquisition. The current POSEIDON system's status includes open and coastal sea fixed platforms, a Ferrybox (FB) system and Bio-Argo autonomous floats that remotely deliver fluorescence as a proxy of chlorophyll-a (Chl-a), O2, pH and pCO2 data, as well as BGC-related physical variables. Since 2010, the list has been further expanded to other BGC (nutrients, vertical particulate matter fluxes), ecosystem and biodiversity (from viruses up to zooplankton) variables, thanks to the addition of sediment traps, frequent research vessel (R/V) visits for seawater–plankton sampling and an acoustic Doppler current profiler (ADCP) delivering information on macrozooplankton–micronekton vertical migration (in the epipelagic to mesopelagic layer). Gliders and drifters are the new (currently under integration to the existing system) platforms, supporting BGC monitoring. Land-based facilities, such as data centres, technical support infrastructure, calibration laboratory and mesocosms, support and give added value to the observatory. The data gathered from these platforms are used to improve the quality of the BGC-ecosystem model predictions, which have recently incorporated atmospheric nutrient deposition processes and assimilation of satellite Chl-a data. Besides addressing open scientific questions at regional and international levels, examples of which are presented, the observatory provides user-oriented services to marine policy makers and the society, and is a technological test bed for new and/or cost-efficient BGC sensor technology and marine equipment. It is part of European and international observing programs, playing a key role in regional data handling and participating in harmonization and best practices procedures. Future expansion plans consider the evolving scientific and society priorities, balanced with sustainable management.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 4 ( 2017-05-04)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2024
    In:  Frontiers in Marine Science Vol. 11 ( 2024-3-26)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 11 ( 2024-3-26)
    Abstract: A basin-scale Mediterranean carbonate system model has been setup, building on the POSEIDON operational biogeochemical model. The spatial variability of carbonate system variables from a 13-year simulation (2010-2022) was validated against CARIMED in situ data (DIC, TA, pCO 2 ), showing reasonable agreement in reproducing the observed patterns and preserving the dynamics in different areas, except a slight overestimation (~15 µmol/kg) of TA in the Eastern Levantine. The time-variability of model outputs (DIC, TA, pCO 2 , pH) was validated, against available time-series from Western (DYFAMED, Villefranche-PointB) and Eastern Mediterranean (HCB) sites, showing good agreement with the data, particularly for pCO 2 , pH and DIC. The model failed to reproduce the observed late summer peak of TA at DYFAMED/PointB sites, which may be partly attributed to the advection of lower alkalinity Atlantic water in the area. The seasonal variability of DIC and pCO 2 @20°C was found to be mainly controlled by winter mixing and the subsequent increase of primary production and net CO 2 biological uptake, which appeared overestimated at HCB. Along with the reference simulation, three sensitivity simulations were performed, de-activating the effect of biology, evaporation and CO 2 air-sea fluxes on DIC and TA, in order to gain insight on the processes regulating the simulated carbonate system variability. The effect of biological processes on DIC was found more significant (peak during spring) in the more productive North Western Mediterranean, while evaporation had a stronger impact (peak during late summer) in the Levantine basin. CO 2 air-sea flux was higher in the Western Mediterranean, particularly the Gulf of Lions and Alboran Sea, as well as in river influenced areas, such as the N. Adriatic and along the pathway of the Black Sea Water in the Aegean. A weak release of CO 2 was found in the Eastern Levantine and Libyan Sea. Its basin average (+2.1 mmol/m 2 /day) and positive trend (+0.1 mmol/m 2 /day/year) indicates a gradually increasing net CO 2 ocean uptake. The simulated positive trends of DIC (0.77 μmol/kg/year) and TA (0.53 μmol/kg/year) in the North Western Mediterranean were consistent with observational and modelling studies, in constrast with the Levantine basin, where no significant trends were found for TA.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...