GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. Suppl 2 ( 2021-11), p. A205-A205
    Abstract: Adoptive transfer of ex-vivo expanded tumor-infiltrating lymphocytes (TIL) has shown promise in the clinic. However, the non-specific expansion of TIL and the lack of understanding of the active component of TIL has resulted in poor correlation between clinical response and dose as well as poor understanding of response and resistance mechanisms. The VELOS TM manufacturing process generates a precision and personalized treatment modality by targeting clonal neoantigens with the incorporation of an antigen-specific expansion step to enrich the product for these specificities. Achilles has developed a second generation manufacturing process (VELOS TM Process 2) to boost the neoantigen-reactive cell dose while maintaining key qualitative features associated with function. Here we report the in-depth characterization of clonal neoantigen-reactive T cells (cNeT) products expanded using the two VELOS TM processes. Methods Matched tumors and peripheral blood from patients undergoing routine surgery were obtained from patients with primary NSCLC or metastatic melanoma ( NCT03517917 ). TIL were expanded from tumor fragments and peptide pools corresponding to the clonal mutations identified using the PELEUS TM bioinformatics platform were synthesized. cNeT were expanded by co-culture of TIL with peptide-pulsed autologous dendritic cells, with an optimized cytokine cocktail and co-stimulation for Process 2. Neoantigen reactivity was assessed using our proprietary potency assay with peptide pool re-challenge followed by intracellular cytokine staining. Single peptide reactivities were identified using ELISPOT and flow cytometric analysis for in-depth phenotyping of cNeT was performed. Results CD3 + T cells displayed higher fold expansion in Process 2 (median 77.4) compared to Process 1 (median 3.8)(n=5). Both processes showed similar CD3 + T cell content (median Process 1=91.3%, Process 2=96.9% n=5) and contained both CD4 + and CD8 + T cells showing reactivity to clonal neoantigens. Proportion of cells responding to neoantigen re-challenge was similar across both processes (median Process 1=19.9% and Process 2=18.2%) leading to higher reactive dose when coupled with higher T cell doses in Process 2. Phenotypically T cells were predominantly effector memory for both processes and Process 2 had lower frequencies of terminally differentiated T cells. Conclusions Achilles’ proprietary potency assay enables the optimization of new processes that deliver high cNeT doses to patients by detecting the active drug component. We have generated proof of concept data that supports the transfer of the VELOS TM Process 2 to clinical manufacture for two first-in-human studies for the treatment of solid cancers. Ethics Approval The samples for the study were collected under an ethically approved protocol ( NCT03517917 )
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 875-875
    Abstract: Adoptive transfer of tumor infiltrating lymphocytes (TIL) has generated objective clinical responses in patients with advanced metastatic cancers. Therapeutic exploitation of neoantigens as targets can potentially lead to safer and more effective treatment modalities with reduced toxicities. The Achilles Therapeutics trial NCT03517917 enabled the acquisition of matched tumor specimens and peripheral blood samples from patients undergoing routine surgery and facilitated the development of the proprietary VELOSTM manufacturing process, generating a personalized clonal neoantigen specific T cell product. An in-depth characterization of T cells expanded with the VELOSTM process was performed and compared to a standard TIL product. Samples were obtained from patients with primary NSCLC or metastatic melanoma. TIL were expanded from tumor fragments after dissection in the presence of IL-2. Peptide pools corresponding to the clonal mutations that were identified using the PELEUSTM bioinformatics platform were used to pulse dendritic cells (DC) generated from peripheral blood monocytes from each patient. Clonal neoantigen specific T cells (cNeT) were expanded using the VELOSTM process by co-culture of TIL with the peptide-pulsed autologous DC. As a comparison, TIL were expanded with a rapid expansion protocol (REP-TIL) in the presence of allogeneic feeders, anti-CD3 antibody and high-dose IL-2. Intracellular cytokine staining was performed following rechallenge with individual peptide pools encoding the clonal mutations. Single peptide reactivities were identified using ELISPOT and extended flow cytometric analysis of markers associated with T cell fitness or dysfunction was performed to phenotypically characterize the cNeT, TIL and REP-TIL. Analysis of the immune cell composition showed that cNeT, TIL and REP-TIL have similar CD3+ T cell content (median cNeT 90.2%, TIL 87.3%, REP-TIL 95%, n=6) and are composed of CD4+ and CD8+ T cells (median CD4:CD8 ratio- cNeT 11.1, TIL 2.03 and REP-TIL 4.7, n=6). cNeT showed superior clonal neoantigen specificity compared to TIL or REP-TIL. The proportion of CD3+ T cells responding to clonal neoantigen rechallenge was increased in cNeT (median 24.3%) compared to TIL (median 0.6%) and REP-TIL (median 1.8%) (n=5). The VELOSTM process incorporating the PELEUSTM platform for prediction of clonal neoantigens generates T cell products enriched for clonal neoantigen reactivities and superior phenotypic characteristics compared to conventional TIL. The VELOSTM process is currently being used to manufacture cNeT for two first-in-human studies including NSCLC and melanoma patients (NCT04032847, NCT03997474). Ethical approval: The samples for the study were collected under an ethically approved protocol (NCT03517917). Citation Format: Eleni Kotsiou, Tie Zheng Hou, Joseph Robinson, Sonal Varsani, Theres Oakes, Pablo D. Becker, Shreenal Patel, Jennine Mootien, Andrew Craig, Jane Robertson, Edward Samuel, James Reading, Lyra Del Rosario, Andrew Haynes, Samra Turajlic, Farah Islam, David Lawrence, Mariam Jamal-Hanjani, Martin Foster, Sergio A. Quezada, Katy Newton. Next generation clonal neoantigen targeting T cells, generated using the PELEUSTM bioinformatics platform and the VELOSTM manufacturing method show superior reactivity and phenotypic characteristics than classical TIL products [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 875.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...