GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 136, No. 2 ( 2020-07-9), p. 157-170
    Abstract: The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts & lt;5% and peripheral blood blasts & lt;1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overt MDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 27, No. 3 ( 2021-03), p. 562-562
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 26, No. 10 ( 2020-10-01), p. 1549-1556
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 6168-6168
    Abstract: Despite a detailed understanding of the genes mutated in myelodysplastic syndromes (MDS), diagnostic and treatment decisions for patients with MDS rely primarily on clinical and cytogenetic variables as considered by the Revised International Prognostic Scoring System (IPSS-R). Here we describe the recently developed Molecular IPSS (IPSS-M), a clinico-genomic risk stratification system that considers clinical, cytogenetic and genetic parameters; the implementation of a web portal to facilitate its adoption, a strategy to handle missing variables, and the worldwide utilization of the web calculator as a clinical support tool. The IPSS-M was trained on 2,957 clinically annotated diagnostic MDS samples profiled for mutations in 156 driver genes. To maximize the clinical applicability of the IPSS-M and account for missing genetic data (i.e genes missing from a sequencing panel), we implemented a strategy to calculate a risk score under three scenarios: best, worst and average. Last, we developed an online calculator as a standalone single-page web application using VueJs, and D3Js for the interactive visualizations, deployed through a CI/CD pipeline on AWS, where collection of anonymous usage analytics allows to track adoption and usability of the new proposed model. The model incorporates clinical, morphological, genetic variables informed by cytogenetics and constructed from the presence of oncogenic mutations in 31 genes. It delivers a unique risk score for each individual patient, as well as an assignment to one of six IPSS-M risk strata. Compared to the IPSS-R the IPSS-M re-stratified 46% of MDS patients. The model was validated in an external dataset of 754 MDS patients. We released an open-access IPSS-M web calculator available at https://mds-risk-model.com. By specifying the patient clinical and molecular profiles, the tool returns the patient-specific IPSS-M risk score and category, and the probability estimates over time for three clinical endpoints, i.e. leukemia free survival (LFS), overall survival, and incidence of leukemic transformation. Since its launch in June 2022, the calculator has been used by & gt;6000 users in & gt;75 countries, reaching a daily average of 100 users per day. Risks have been calculated for & gt;45,000 patient profiles. 99.28% of the sessions initiated reach an IPSS-M score, suggesting that the calculator is intuitive and easy to use. We trained and validated the IPSS-M on 3,711 patients, a patient tailored risk stratification tool for patients with MDS that considers clinical, morphological and genetic variables inclusive of cytogenetics and mutations in one of 31 genes. The development of a web based tool was instrumental to the global dissemination of the model, enabling non-expert users to leverage the power of molecular biomarkers in risk stratification for patients with MDS. Citation Format: Elsa Bernard, Juan E. Arango Ossa, Heinz Tuechler, Peter L. Greenberg, Robert P. Hasserjian, Yasuhito Nannya, Sean M. Devlin, Maria Creignou, Philippe Pinel, Lily Monier, Juan S. Medina-Martinez, Dylan Domenico, Martin Jädersten, Ulrich Germing, Guillermo Sanz, Arjan A. van de Loosdrecht, Olivier Kosmider, Matilde Y. Follo, Felicitas Thol, Lurdes Zamora, Ronald F. Pinheiro, Andrea Pellagatti, Detlef Haase, Pierre Fenaux, Monika Belickova, Michael R. Savona, Virginia M. Klimek, Fabio P. Santos, Jacqueline Boultwood, Ioannis Kotsianidis, Valeria Santini, Francesc Solé, Uwe Platzbecker, Michael Heuser, Peter Valent, Kazuma Ohyashiki, Carlo Finelli, Maria Teresa Voso, Lee-Yung Shih, Michaela Fontenay, Joop H. Jansen, José Cervera, Norbert Gattermann, Benjamin L. Ebert, Rafael Bejar, Luca Malcovati, Mario Cazzola, Seishi Ogawa, Eva Hellström-Lindberg, Elli Papaemmanuil. Implementation and adoption of a web tool to support precision diagnostic and treatment decisions for patient with myelodysplastic syndromes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6168.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: NEJM Evidence, Massachusetts Medical Society, Vol. 1, No. 7 ( 2022-06-28)
    Type of Medium: Online Resource
    ISSN: 2766-5526
    Language: English
    Publisher: Massachusetts Medical Society
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 9785-9788
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 27, No. 5 ( 2021-05), p. 927-927
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 675-675
    Abstract: Background In patients with Myelodysplastic Syndromes (MDS), TP53 mutations associate with high-risk presentation, complex karyotype, acute myeloid leukemia (AML) progression and poor response to hematopoietic stem cell transplantation. These associations highlight the relevance of TP53 as a prognostic and predictive biomarker. Consistent with its role as a tumor suppressor, bi-allelic targeting of the TP53 locus is a frequent but not an obligatory event. Despite the central role of TP53 in MDS, the clinical implications of TP53 mutations in the context of allelic state have not been extensively studied. Methods Under the auspices of the International Working Group for Prognosis in MDS, we sequenced a representative cohort of 3,324 peri-diagnosis MDS patients on a next generation sequencing (NGS) panel optimized for myeloid disease. Conventional G-banding analysis (CBA) was available for 2,931 patients. Focal (~3MB) gains and deletions and regions of NGS-derived copy-neutral loss of heterozygosity (cnLOH) were assessed using an in-house algorithm CNACS. Putative oncogenic mutations in TP53 were characterized by consideration of normal controls and established population databases. A validation cohort of 1,120 samples with independent but comparable molecular and clinical annotation was sourced from a compendium of Japanese MDS data to include JALSG-MDS212, JMDP registry, and regional registries. Results NGS-derived ploidy alterations and CBA show a high genome-wide concordance. From NGS profiles, 11% of patients (n=360) are subject to cnLOH, of which 80 target the TP53 locus. We characterize 490 TP53 mutations in 380 patients, representing 11% of the cohort. Amongst those patients, 22% (n=85) and 21% (n=78) have a deletion or a cnLOH involving the TP53 locus, respectively. Taken together, these segregate patients into two TP53 states: a mono-allelic state where one wild type allele remains (33% of TP53 mutated patients, n=126); and a multi-hit state where TP53 is altered multiple times by either mutations, deletions or cnLOH (67% of TP53 mutated patients, n=254). We find that TP53 state shapes clinical presentation and outcomes. Mono-allelic TP53 patients present with more favorable disease than multi-hit TP53 patients: they are less cytopenic, have lower bone marrow blasts (median 4 vs. 9%, p & lt;0.0001) and are enriched in low risk WHO subtypes. We show that the established association between mutated TP53 and complex karyotype is specific to the multi-hit TP53 state (OR=66, CI: 33-141, p & lt;0.0001). Critically, we show that multi-hit TP53 associates with worse overall survival as compared to mono-allelic TP53 (HR=3.7, CI: 2.7-5.1, p & lt;0.0001; Figure 1a) and more pronounced AML transformation (HR=5.3, CI: 3.1-8.9, p & lt;0.0001; Figure 1b). Patients with mono-allelic TP53 mutations have a similar survival to that of wild type TP53 patients and track overall IPSS-R, whereas multi-hit TP53 stratifies adverse prognostic subgroups independent of the IPSS-R. We formally test this using multivariate models that consider age, peripheral blood counts, blasts and IPSS-R cytogenetic score and show that multi-hit TP53 state is an independent prognostic factor for overall survival and AML transformation, whilst mono-allelic TP53 state is not significant. We also observe a significant difference in overall survival between TP53 states in the context of therapy-related MDS (HR=3.1, CI: 1.2-7.9, p=0.03). Last, analyses of 12 serial samples identify multi-hit targeting of the TP53 locus as a critical driver of AML transformation in the context of TP53-mutated MDS. These findings are replicated in the validation cohort. Conclusions TP53 is a natural candidate for incorporation in molecularly informed risk stratification schemas (molecular IPSS-R). We show that TP53 state rather than mutation alone is an independent diagnostic and prognostic biomarker in MDS. We propose that ascertainment of TP53 state is critical in prospective clinical sequencing for risk estimation, disease monitoring and future correlative research into predictors of response to established and investigational therapies. Disclosures Bernard: Celgene: Research Funding. Hasserjian:Jazz Pharmaceuticals: Consultancy; Promedior, Inc.: Consultancy. Germing:Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Jazz Pharmaceuticals: Honoraria; Amgen: Honoraria. Cargo:Celgene: Research Funding. Santini:Acceleron: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Menarini: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kotsianidis:Celgene: Research Funding. Takaori-Kondo:Pfizer: Honoraria; Chugai: Research Funding; Janssen: Honoraria; Kyowa Kirin: Research Funding; Takeda: Research Funding; Ono: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Novartis: Honoraria. Savona:Selvita: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Patents & Royalties; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sunesis: Research Funding. Ades:Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Silence Therapeutics: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Helsinn Healthcare: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding. Neuberg:Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Equity Ownership; Celgene: Research Funding. Stevenson:Celgene: Research Funding. Fenaux:Jazz: Honoraria, Research Funding; Astex: Honoraria, Research Funding; Aprea: Research Funding; Celgene Corporation: Honoraria, Research Funding. Platzbecker:Novartis: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Heuser:Synimmune: Research Funding; Bayer Pharma AG, Berlin: Research Funding. Valent:Blueprint: Research Funding; Pfizer: Honoraria; Celgene: Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Deciphera: Honoraria, Research Funding. Miyazaki:Nippon-Shinyaku: Honoraria; Dainippon-Sumitomo: Honoraria; Otsuka: Honoraria; Chugai: Research Funding; Novartis: Honoraria; Kyowa-Kirin: Honoraria. Finelli:Novartis: Consultancy, Speakers Bureau; Celgene Corporation: Consultancy, Research Funding, Speakers Bureau; Janssen: Consultancy, Speakers Bureau. Atsuta:CHUGAI PHARMACEUTICAL CO., LTD.: Honoraria; Kyowa Kirin Co., Ltd: Honoraria. Gattermann:Novartis: Honoraria; Takeda: Research Funding; Alexion: Research Funding. Ebert:Broad Institute: Other: Contributor to a patent filing on this technology that is held by the Broad Institute.; Celgene: Research Funding; Deerfield: Research Funding. Bejar:Celgene: Consultancy; Takeda Pharmaceuticals: Research Funding; AbbVie/Genentech: Consultancy, Honoraria; Astex/Otsuka: Consultancy; Modus Outcomes: Consultancy; Daiichi-Sankyo: Consultancy. Greenberg:Notable Labs: Research Funding; Celgene: Research Funding; Genentech: Research Funding; H3 Biotech: Research Funding; Aprea: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees. Ogawa:Qiagen Corporation: Patents & Royalties; ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership; RegCell Corporation: Equity Ownership; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding; Kan Research Laboratory, Inc.: Consultancy; Asahi Genomics: Equity Ownership. Papaemmanuil:Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...