GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Development, The Company of Biologists, Vol. 123, No. 1 ( 1996-12-01), p. 285-292
    Abstract: As part of a large-scale mutagenesis screen of the zebrafish genome, we have identified 58 mutations that affect the formation and function of the cardiovascular system. The cardiovascular system is particularly amenable for screening in the transparent zebrafish embryo because the heart and blood vessels are prominent and their function easily examined. We have classified the mutations affecting the heart into those that affect primarily either morphogenesis or function. Nine mutations clearly disrupt the formation of the heart. cloche deletes the endocardium. In cloche mutants, the myocardial layer forms in the absence of the endocardium but is dysmorphic and exhibits a weak contractility. Two loci, miles apart and bonnie and clyde, play a critical role in the fusion of the bilateral tubular primordia. Three mutations lead to an abnormally large heart and one to the formation of a diminutive, dysmorphic heart. We have found no mutation that deletes the myocardial cells altogether, but one, pandora, appears to eliminate the ventricle selectively. Seven mutations interfere with vascular integrity, as indicated by hemorrhage at particular sites. In terms of cardiac function, one large group exhibits a weak beat. In this group, five loci affect both chambers and seven a specific chamber (the atrium or ventricle). For example, the weak atrium mutation exhibits an atrium that becomes silent but has a normally beating ventricle. Seven mutations affect the rhythm of the heart causing, for example, a slow rate, a fibrillating pattern or an apparent block to conduction. In several other mutants, regurgitation of blood flow from ventricle to atrium is the most prominent abnormality, due either to the absence of valves or to poor coordination between the chambers with regard to the timing of contraction. The mutations identified in this screen point to discrete and critical steps in the formation and function of the heart and vasculature.
    Type of Medium: Online Resource
    ISSN: 0950-1991 , 1477-9129
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1996
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 1992
    In:  Developmental Biology Vol. 153, No. 1 ( 1992-9), p. 91-101
    In: Developmental Biology, Elsevier BV, Vol. 153, No. 1 ( 1992-9), p. 91-101
    Type of Medium: Online Resource
    ISSN: 0012-1606
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1992
    detail.hit.zdb_id: 1463203-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Development, The Company of Biologists, Vol. 123, No. 1 ( 1996-12-01), p. 303-309
    Abstract: We have identified mutations that perturb the formation or differentiation of the first embryonic blood cells in the zebrafish embryo. These ‘primitive’ red blood cells originate in the intermediate cell mass of the trunk, a derivative of the dorsal lateral plate mesoderm. By transfusion of blood between embryos we demonstrate that this cohort of cells provides the embryo with all, or nearly all, of its blood cells until at least day 5 postfertilization. Larval lethal mutations generated by ENU mutagenesis affect different steps in the development of these cells. Some cause defects in precursor generation, others defects in differentiation, and others an increase in cellular photosensitivity.
    Type of Medium: Online Resource
    ISSN: 0950-1991 , 1477-9129
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1996
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Company of Biologists ; 1994
    In:  Development Vol. 120, No. 12 ( 1994-12-01), p. 3361-3366
    In: Development, The Company of Biologists, Vol. 120, No. 12 ( 1994-12-01), p. 3361-3366
    Abstract: We have examined the zebrafish embryo to ascertain the location of endocardial and myocardial progenitors prior to gastrulation, in an attempt to define the earliest stages of cardiac patterning. Currently there is uncertainty as to the spatial and lineage relationship of the progenitors for these two phenotypically distinct cell types that form the two concentric layers of the primitive heart tube. By single-cell injection and tracking, we distinguish a region in the early and midblastula which has the properties of a heart field, in that it defines a zone of cardiac progenitors within which there is a spatial gradient of propensity to generate heart cells, and which regulates, in the sense of adapting to the transplantation of pluripotential cells. This zone extends from the future ventral axis dorsally along the margin, with cardiogenic propensity tapering off laterally and dorsally. Myocardial progenitors are spread through-out this region, but endocardial precursors are restricted to the ventral marginal region. The cardiovascular progeny of the ventral cells include, in addition to endocardium and myocardium, cells in the endothelium and blood.
    Type of Medium: Online Resource
    ISSN: 0950-1991 , 1477-9129
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1994
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Company of Biologists ; 1995
    In:  Development Vol. 121, No. 10 ( 1995-10-01), p. 3141-3150
    In: Development, The Company of Biologists, Vol. 121, No. 10 ( 1995-10-01), p. 3141-3150
    Abstract: Endothelial and hematopoietic cells appear synchronously on the extra-embryonic membranes of amniotes in structures known as blood islands. This observation has led to the suggestion that these two ventral lineages share a common progenitor. Recently, we have shown in the zebrafish, Danio rerio, that a single cell in the ventral marginal zone of the early blastula can give rise to both endothelial and blood cells as well as to other mesodermal cells (Stainier, D. Y. R., Lee, R. K. and Fishman, M. C. (1993). Development 119, 31-40; Lee, R. K. K., Stainier, D. Y. R., Weinstein, B. M. and Fishman, M. C. (1994). Development 120, 3361-3366). Here we describe a zebrafish mutation, cloche, that affects both the endothelial and hematopoietic lineages at a very early stage. The endocardium, the endothelial lining of the heart, is missing in mutant embryos. This deletion is selective as evidenced by the presence of other endothelial cells, for example those lining the main vessels of the trunk. Early cardiac morphogenesis proceeds normally even in the absence of the endocardium. The myocardial cells form a tube that is demarcated into chambers, beats rhythmically, but exhibits a reduced contractility. This functional deficit is likely due to the absence of the endocardial cells, although it may be a direct effect of the mutation on the myocardial cells. Cell transplantation studies reveal that the endothelial defect, i.e. the endocardial deletion, is a cell-autonomous lesion, consistent with the possibility that cloche is part of a signal transduction pathway. In addition, the number of blood cells is greatly reduced in cloche mutants and the hematopoietic tissues show no expression of GATA-1 or GATA-2, two key hematopoietic transcription factors that are first expressed during early embryogenesis. These results show that cloche is involved in the genesis and early diversification of the endothelial and blood lineages, possibly by affecting a common progenitor cell population.
    Type of Medium: Online Resource
    ISSN: 0950-1991 , 1477-9129
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1995
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Company of Biologists ; 1993
    In:  Development Vol. 119, No. 1 ( 1993-09-01), p. 31-40
    In: Development, The Company of Biologists, Vol. 119, No. 1 ( 1993-09-01), p. 31-40
    Abstract: We have analyzed the origin of cardiac progenitors in the zebrafish embryo by injection of single blastomeres with a lineage tracer dye, and examined the formation of the zebrafish heart tube by serial sectioning of immunostained embryos. At the 512-cell stage (early blastula), most cardiac progenitors lie in a marginal zone that extends from 90° longitude (midway between the future dorsal and ventral axis) through 180° longitude (the future ventral axis) to 270° longitude. By focusing on myocardial progenitors located at 90° (and 270°) longitude, we found that a single cell injected in the early blastula can contribute progeny to both the atrium and ventricle. A cell injected in the midblastula contributes progeny to either the atrium or ventricle, but not both. This analysis suggests that, at least for these myocardial progenitors, the atrial and ventricular lineages separate in the midblastula. Precardiac cells involute early during gastrulation and turn towards the animal pole with other early involuting cells. These cardiogenic cells reach the embryonic axis around the 8-somite stage, and there they coalesce to form a pair of myocardial tubular primordia on either side of the midline. By the 21-somite stage, the tropomyosin-immunoreactive myocardial tubes have moved closer to each other, and a distinct group of cells, the endocardial progenitor cells, sits medially between them. The myocardial tubes then fuse to enclose the endocardial cells and form the definitive heart tube. By 22 hours postfertilization (26-somite stage), the heart tube is clearly beating. The regionalization of cardiac myosin heavy chain expression distinguishes the cardiac chambers at this stage, although they are not morpho-logically delineated until 36 hours. This work shows that cardiogenic regions can be identified in the early blastula, and that chamber restriction seems to arise in the midblastula. Additionally, it provides the basis for embryological perturbation at the single cell level, as well as for the genetic analysis of heart tube formation in the zebrafish.
    Type of Medium: Online Resource
    ISSN: 0950-1991 , 1477-9129
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1993
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 1994
    In:  Trends in Cardiovascular Medicine Vol. 4, No. 5 ( 1994-9), p. 207-212
    In: Trends in Cardiovascular Medicine, Elsevier BV, Vol. 4, No. 5 ( 1994-9), p. 207-212
    Type of Medium: Online Resource
    ISSN: 1050-1738
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1994
    detail.hit.zdb_id: 2010986-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 1996
    In:  Mechanisms of Development Vol. 59, No. 2 ( 1996-10), p. 205-218
    In: Mechanisms of Development, Elsevier BV, Vol. 59, No. 2 ( 1996-10), p. 205-218
    Type of Medium: Online Resource
    ISSN: 0925-4773
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1996
    detail.hit.zdb_id: 1466356-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...