GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    International Glaciological Society ; 2002
    In:  Annals of Glaciology Vol. 35 ( 2002), p. 347-354
    In: Annals of Glaciology, International Glaciological Society, Vol. 35 ( 2002), p. 347-354
    Abstract: In the framework of the European Project for Ice Coring in Antarctica (EPICA) a glacio-chemical pre-site survey was carried out in Dronning Maud Land (DML), Antarctica, to investigate seasonal and spatial variations. All ion species show pronounced seasonal cycles with the exception of nitrate, which is subject to post-depositional alterations. Sea salt reaches maximum concentrations in late winter/spring, while sulphate, being mainly of marine biogenic origin, shows a double peak with high concentrations both in autumn and in late spring/summer. Methanesulphonate (MSA) also shows a strong autumn peak but only slight indications of a second peak in late spring/summer, as seen for sulphate. Due to post-depositional changes, the seasonal cycle of MSA vanishes further down in the firn. These changes are also reflected in the spatial distribution of MSA. While surface MSA concentrations decline with altitude and higher accumulation rates, concentrations of aged snow show a strong increase with higher accumulation rates in our ice cores. Non-sea-salt sulphate shows a 40% decrease with an increase in snow accumulation of about 80% in recent and aged snow. While the geographical variation is negligible for average nitrate concentrations, sea salt shows an exponential decline with altitude. the outcome of this study confirms that the data of the new EPICA deep drilling site in DML (75˚00.10’ S, 0˚04.07’ E) will be representative for this region, and high-resolution analytical methods will allow accurate stratigraphic dating of a deep ice core.
    Type of Medium: Online Resource
    ISSN: 0260-3055 , 1727-5644
    Language: English
    Publisher: International Glaciological Society
    Publication Date: 2002
    detail.hit.zdb_id: 2122400-6
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    International Glaciological Society ; 2004
    In:  Journal of Glaciology Vol. 50, No. 168 ( 2004), p. 137-146
    In: Journal of Glaciology, International Glaciological Society, Vol. 50, No. 168 ( 2004), p. 137-146
    Abstract: In the framework of the European Project for Ice Coring in Antarctica (EPICA), a comprehensive glaciological pre-site survey has been carried out on Amundsenisen, Dronning Maud Land, East Antarctica, in the past decade. Within this survey, four intermediate-depth ice cores and 13 snow pits were analyzed for their ionic composition and interpreted with respect to the spatial and temporal variability of volcanic sulphate deposition. The comparison of the non-sea-salt (nss)-sulphate peaks that are related to the well-known eruptions of Pinatubo and Cerro Hudson in AD 1991 revealed sulphate depositions of comparable size (15.8±3.4 kg km –2 ) in 11 snow pits. There is a tendency to higher annual concentrations for smaller snow-accumulation rates. The combination of seasonal sodium and annually resolved nss-sulphate records allowed the establishment of a time-scale derived by annual-layer counting over the last 2000 years and thus a detailed chronology of annual volcanic sulphate deposition. Using a robust outlier detection algorithm, 49 volcanic eruptions were identified between AD 165 and 1997. The dating uncertainty is ±3 years between AD 1997 and 1601, around ±5 years between AD 1601 and 1257, and increasing to ±24 years at AD 165, improving the accuracy of the volcanic chronology during the penultimate millennium considerably.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: International Glaciological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 16 ( 2012-04-17), p. 5967-5971
    Abstract: Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10 Be and 14 C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10 Be ice core records from Greenland and Antarctica with the global 14 C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10 Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...