GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fischer, H.  (3)
  • 2005-2009  (3)
Material
Publisher
Language
Years
  • 2005-2009  (3)
Year
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2008
    In:  Atmospheric Chemistry and Physics Vol. 8, No. 8 ( 2008-04-16), p. 2151-2188
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 8, No. 8 ( 2008-04-16), p. 2151-2188
    Abstract: Abstract. MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere. The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality. MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September~2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of solar variability on the middle atmosphere, and the observation of Non-LTE effects in the mesosphere.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2008
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 7, No. 1 ( 2007-01-18), p. 257-281
    Abstract: Abstract. Altitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30–35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm−2 (1.0±1.1%) and −0.09±0.19×1014 cm−2 (−0.8±1.7%), depending on the coincidence criterion applied. χ2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS – FTIR or MIPAS – ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for χ2 deviations. From the resulting χ2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2007
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 9, No. 4 ( 2009-02-16), p. 1151-1163
    Abstract: Abstract. This paper presents the spatio-temporal distribution of NOy species at altitudes between 14 and 31 km as measured with the MIPAS-B instrument on the morning of 21 March 2003 in northern Scandinavia. At lower altitudes (below about 22 km), temperature variations, the distribution of ClONO2, and the tracer N2O reveal the dynamics through the edge of the late arctic polar vortex. At higher altitudes, continuous measurement before, during, and after sunrise provides information about photochemistry illustrating the evolution of the photochemically active gases NO2 and N2O5 around sunrise. The measured temporal evolution of NO2 and N2O5 is compared to box modelling that is run along backward calculated trajectories. While the comparison of measured and modelled N2O5 reveals significant differences, there is a good agreement between the model and observations for NO2 in terms of volume mixing ratios but the simulated decrease shortly after sunrise is underestimated compared to the measurements. The differences are attributed to the photolysis rates used in the box model calculations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2009
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...