GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOP Publishing  (7)
  • Finley, C.
Material
Publisher
  • IOP Publishing  (7)
Language
Years
  • 1
    In: Journal of Instrumentation, IOP Publishing, Vol. 16, No. 07 ( 2021-07-01), p. P07041-
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Cosmology and Astroparticle Physics, IOP Publishing, Vol. 2022, No. 01 ( 2022-01-01), p. 027-
    Abstract: Since the discovery of a flux of high-energy astrophysical neutrinos, searches for their origins have focused primarily at TeV-PeV energies. Compared to sub-TeV searches, high-energy searches benefit from an increase in the neutrino cross section, improved angular resolution on the neutrino direction, and a reduced background from atmospheric neutrinos and muons. However, the focus on high energy does not preclude the existence of sub-TeV neutrino emission where IceCube retains sensitivity. Here we present the first all-flavor search from IceCube for transient emission of low-energy neutrinos, focusing on the energy region of 5.6-100 GeV using three years of data obtained with the IceCube-DeepCore detector. We find no evidence of transient neutrino emission in the data, thus leading to a constraint on the volumetric rate of astrophysical transient sources in the range of ∼ 705-2301 Gpc -3 yr -1 for sources following a subphotospheric energy spectrum with a mean energy of 100 GeV and a bolometric energy of 10 52 erg.
    Type of Medium: Online Resource
    ISSN: 1475-7516
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2104147-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Instrumentation, IOP Publishing, Vol. 17, No. 06 ( 2022-06-01), p. P06026-
    Abstract: The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Instrumentation, IOP Publishing, Vol. 16, No. 08 ( 2021-08-01), p. P08034-
    Abstract: IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies 〉 1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Cosmology and Astroparticle Physics, IOP Publishing, Vol. 2023, No. 10 ( 2023-10-01), p. 003-
    Abstract: In this work, we present the results of searches for signatures of dark matter decay or annihilation into Standard Model particles, and secret neutrino interactions with dark matter. Neutrinos could be produced in the decay or annihilation of galactic or extragalactic dark mat ter. Additionally, if an interaction between dark matter and neutrinos exists then dark matter will interact with extragalactic neutrinos. In particular galactic dark matter will induce an anisotropy in the neutrino sky if this interaction is present. We use seven and a half years of the High-Energy Starting Event (HESE) sample data, which measures neutrinos in the energy range of approximately 60 TeV to 10 PeV, to study these phenomena. This all-sky event selection is dominated by extragalactic neutrinos. For dark matter of ∼ 1 PeV in mass, we constrain the velocity-averaged annihilation cross section to be smaller than 10 -23 cm 3 /s for the exclusive μ + μ - channel and 10 -22 cm 3 /s for the bb̅ channel. For the same mass, we constrain the lifetime of dark matter to be larger than 10 28 s for all channels studied, except for decaying exclusively to bb̅ where it is bounded to be larger than 10 27 s. Finally, we also search for evidence of astrophysical neutrinos scattering on galactic dark matter in two scenarios. For fermionic dark matter with a vector mediator, we constrain the dimensionless coupling associated with this interaction to be less than 0.1 for dark matter mass of 0.1 GeV and a mediator mass of 10 -4 GeV. In the case of scalar dark matter with a fermionic mediator, we constrain the coupling to be less than 0.1 for dark matter and mediator masses below 1 MeV.
    Type of Medium: Online Resource
    ISSN: 1475-7516
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2104147-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    IOP Publishing ; 2023
    In:  Journal of Instrumentation Vol. 18, No. 04 ( 2023-04-01), p. P04014-
    In: Journal of Instrumentation, IOP Publishing, Vol. 18, No. 04 ( 2023-04-01), p. P04014-
    Abstract: The D-Egg, an acronym for “Dual optical sensors in an Ellipsoid Glass for Gen2,” is one of the optical modules designed for future extensions of the IceCube experiment at the South Pole. The D-Egg has an elongated-sphere shape to maximize the photon-sensitive effective area while maintaining a narrow diameter to reduce the cost and the time needed for drilling of the deployment holes in the glacial ice for the optical modules at depths up to 2700 m. The D-Egg design is utilized for the IceCube Upgrade, the next stage of the IceCube project also known as IceCube-Gen2 Phase 1, where nearly half of the optical sensors to be deployed are D-Eggs. With two 8-inch high-quantum efficiency photomultiplier tubes (PMTs) per module, D-Eggs offer an increased effective area while retaining the successful design of the IceCube digital optical module (DOM). The convolution of the wavelength-dependent effective area and the Cherenkov emission spectrum provides an effective photodetection sensitivity that is 2.8 times larger than that of IceCube DOMs. The signal of each of the two PMTs is digitized using ultra-low-power 14-bit analog-to-digital converters with a sampling frequency of 240 MSPS, enabling a flexible event triggering, as well as seamless and lossless event recording of single-photon signals to multi-photons exceeding 200 photoelectrons within 10 ns. Mass production of D-Eggs has been completed, with 277 out of the 310 D-Eggs produced to be used in the IceCube Upgrade. In this paper, we report the design of the D-Eggs, as well as the sensitivity and the single to multi-photon detection performance of mass-produced D-Eggs measured in a laboratory using the built-in data acquisition system in each D-Egg optical sensor module.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Instrumentation, IOP Publishing, Vol. 17, No. 11 ( 2022-11-01), p. P11003-
    Abstract: IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.
    Type of Medium: Online Resource
    ISSN: 1748-0221
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2235672-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...