GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cells, MDPI AG, Vol. 9, No. 10 ( 2020-09-25), p. 2166-
    Abstract: Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial Alzheimer’s disease (FAD). It forms the catalytic core of the γ-secretase complex—a function shared with its homolog presenilin-1 (PS1)—the enzyme ultimately responsible of amyloid-β (Aβ) formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved, independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+ signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former, evidence has accumulated that supports the involvement of PS2 at different levels, ranging from organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2 mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and brain network excitability. In this contribution, we summarize the main findings on PS2, primarily as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2 mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle the complexity of memory loss and brain degeneration that occurs in Alzheimer’s disease (AD).
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  International Journal of Molecular Sciences Vol. 21, No. 15 ( 2020-07-25), p. 5288-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 15 ( 2020-07-25), p. 5288-
    Abstract: Senile plaques, the hallmarks of Alzheimer’s Disease (AD), are generated by the deposition of amyloid-beta (Aβ), the proteolytic product of amyloid precursor protein (APP), by β and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aβ accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aβ production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aβ-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aβ42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Function Vol. 2, No. 3 ( 2021-03-22)
    In: Function, Oxford University Press (OUP), Vol. 2, No. 3 ( 2021-03-22)
    Abstract: Mitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).
    Type of Medium: Online Resource
    ISSN: 2633-8823
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 3040501-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Aging Clinical and Experimental Research, Springer Science and Business Media LLC, Vol. 33, No. 6 ( 2021-06), p. 1705-1708
    Type of Medium: Online Resource
    ISSN: 1720-8319
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2119282-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...