GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fan, Guofeng  (5)
  • Wang, Zengliang  (5)
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Child's Nervous System Vol. 39, No. 7 ( 2023-07), p. 1711-1718
    In: Child's Nervous System, Springer Science and Business Media LLC, Vol. 39, No. 7 ( 2023-07), p. 1711-1718
    Abstract: To investigate the association of folate metabolism gene polymorphism with neural tube defects (NTDs) in Chinese population. Methods The subjects were divided into two groups, 495 children with NTDs (NTD group) and 255 healthy children (control group). Results The levels of folic acid, s-adenosine methionine (SAM), and Sam/s-adenosine homocysteine (SAH) in NTD group were lower than those in control group. There were significant differences in hey, SAH, and Sam levels between two groups, but there was no significant difference in folic acid content. High fever in early pregnancy, taking antiepileptic drugs, father’s exposure to organic solvents, folic acid deficiency, and mother’s diabetes were the important risk factors in NTDs. MTHFR 677C  〉  T gene was a risk factor for NTD in children, while 1298A  〉  C gene was a protective factor. Conclusion Folic acid metabolism markers were different in NTD children and their mothers, and the overall trend showed that folate, SAM, and SAM/SAH levels were decreased, while Hcy and SAH levels were increased; MTHFR 677C  〉  T gene of SNPs was a risk factor for the occurrence of NTDs, and MTHFR 1298A  〉  C gene was a protective factor, and the environmental risk factor had a synergistic effect on occurrence of NTDs.
    Type of Medium: Online Resource
    ISSN: 0256-7040 , 1433-0350
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1463024-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-10-20)
    Abstract: Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the “seed and soil” hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-8-9), p. 1-28
    Abstract: Objective. Research over the past decade has suggested important roles for pseudogenes in gliomas. Our previous study found that the RPL4P4 pseudogene is highly expressed in gliomas. However, its biological function in gliomas remains unclear. Methods. In this study, we analyzed clinical data on patients with glioma obtained from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx), and the GEPIA2 databases. We used the R language for the main analysis. Correlations among RPL4P4 expression, pathological characteristics, clinical outcome, and biological function were evaluated. In addition, the correlations of RPL4P4 expression with immune cell infiltration and glioma progression were analyzed. Finally, wound healing, Transwell, and CCK-8 assays were performed to analyze the function of RPL4P4 in glioma cells. Result. We found that RPL4P4 is highly expressed in glioma tissues and is associated with poor prognosis, IDH1 wild type, codeletion of 1p19q, and age. Multivariate analysis and the nomogram model showed that high RPL4P4 expression was an independent risk factor for glioma prognosis and had better prognostic prediction power. Moreover, high RPL4P4 expression correlated with immune cell infiltration, which showed a significant positive association with M2-type macrophages. Finally, RPL4P4 knockdown in glioma cell lines caused decreased glioma cell proliferation, invasion, and migration capacity. Conclusion. Our data suggest that RPL4P4 can function as an independent prognostic predictor of glioma. It also shows that RPL4P4 expression correlates with immune cell infiltration and that targeting RPL4P4 may be a new strategy for the treatment of glioma patients.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2023-09-02)
    Abstract: Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. Methods We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. Results The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. Conclusion Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: BioMed Research International, Hindawi Limited, Vol. 2022 ( 2022-12-31), p. 1-9
    Abstract: Objective. The safety and efficacy of three-dimensional- (3D-) printed hydroxyapatite/polylactic acid (HA-PLA) composites in repairing cranial defects were evaluated in a rabbit experimental model. Methods. Twelve New Zealand rabbits were selected as experimental subjects. Two holes (A and B), each with a diameter of approximately 1 cm, were made in the cranium of each rabbit. Hole A served as the experimental manipulation, and hole B served as the control manipulation. A 3D-printed HA-PLA composite was used for placement onto hole A, whereas autologous bone powder was used for placement onto hole B. Samples from the experimental holes and the control holes were collected at 30 and 90 days after surgery. The obtained materials were examined in terms of their morphologies and histopathologies and were also subjected to simultaneous hardness tests. Results. Both the 3D-printed HA-PLA composite and autologous bone powder were able to repair and fill the cranial defects at 30 days and 90 days after surgery. At 30 days after surgery, the microhardness of the area repaired by the HA-PLA composite was lower than that of the area repaired by autogenous bone powder ( p 〈 0.01 ), but neither of these treatments reached the hardness of normal bone at this time ( p 〈 0.01 ). At 90 days after surgery, there was no statistically significant difference in the microhardness of the repaired area from the 3D-printed HA-PLA composite compared with that of the repaired area from autologous bone powder ( p 〉 0.05 ), and there was no statistically significant difference in the hardness of the two repaired areas compared with that of the normal bone ( p 〉 0.05 ). Hematoxylin-eosin staining showed that bone cells in the HA-PLA material in the experimental group grew and were arranged in an orderly manner. Bone trabeculae and marrow cavities were formed on the pore surface and inside of the HA-PLA scaffold, and the arrangement of bone trabeculae was regular. Conclusion. 3D-printed HA-PLA composites can induce bone regeneration, are biocompatible, have the same strength as autologous bone powder, are able to degrade, and are ultimately safe and effective for repairing cranial defects in rabbits. However, further research is needed to determine the feasibility of 3D-printed HA-PLA composites in human cranioplasty.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...