GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Falleni, Alessandra  (1)
Material
Publisher
Language
Years
  • 1
    In: Molecules, MDPI AG, Vol. 26, No. 21 ( 2021-11-06), p. 6726-
    Abstract: Connexins (Cxs) are a family of membrane-spanning proteins, expressed in vertebrates and named according to their molecular weight. They are involved in tissue homeostasis, and they function by acting at several communication levels. Cardiac Cxs are responsible for regular heart function and, among them, Cx26 and Cx43 are widely expressed throughout the heart. Cx26 is present in vessels, as well as in cardiomyocytes, and its localization is scattered all over the cell aside from at the intercalated discs as is the case for the other cardiac Cxs. However, having been found in cardiomyocytes only recently, both its subcellular localization and its functional characterization in cardiomyocytes remain poorly understood. Therefore, in this study we aimed to obtain further data on the localization of Cx26 at the subcellular level. Our TEM immunogold analyses were performed on rat heart ventricles and differentiated H9c2 cardiac cell sections as well as on differentiated H9c2 derived extracellular vesicles. The results confirmed the absence of Cx26 at intercalated discs and showed the presence of Cx26 at the level of different subcellular compartments. The peculiar localization at the level of extracellular vesicles suggested a specific role for cardiac Cx26 in inter-cellular communication in an independent gap junction manner.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...