GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Erdenebileg, Enkhmaa  (2)
  • Liu, Guofang  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Functional Ecology, Wiley, Vol. 34, No. 7 ( 2020-07), p. 1472-1484
    Abstract: Litter decomposition in sunny, semi‐arid and arid ecosystems is controlled by both biotic factors including litter traits and abiotic factors including UV light, but for wood decomposition it still remains uncertain which of these environmental factors are the predominant controls among different woody species. In these dry ecosystems, it is likely that the stem diameter and spatial position of the dead wood are of particular importance especially where wood can be buried versus exposed due to substrate displacement by wind. Here we focus on the fact that stem diameter can affect decomposition rates both via the relative surface exposure to sunlight or soil and via higher resource quality of narrower stems to decomposers. In a field manipulation experiment, we investigated the relative importance of litter position (sand burial vs. surface vs. suspended above the surface), UV radiation (block versus pass) and stem diameter class ( 〈 2, 2–4, 4–8, 8–13 and 13–20 mm) on the mass loss of woody litters of four shrub species in an inland dune ecosystem in northern China. We found that after 34 months of in situ incubation, the mass loss of buried woody litters was three times faster than those of suspended and surface woody litters (53.5 ± 2.7%, 17.0 ± 1.0% and 14.4 ± 1.2%, respectively). In surface and suspended positions, litter decomposition rates were almost equally low and most mass loss was during the first 2 years, when bark was still attached and UV radiation had no significant effect on woody litter mass loss. These findings suggest that sand burial is the main environmental driver of wood decomposition via its control on microbial activity. Moreover, wood N and diameter class were the predominant factors driving woody litter decomposition. A key finding was that wider stems had slower litter decomposition rates not only directly (presumably via greater relative surface exposure) but also indirectly via their higher wood dry matter content or lower wood N; these effects were modulated by litter position. Our findings highlight a dual role of stem diameter on wood decomposition, that is, via relative surface exposure and via wood traits. The accuracy and confidence of global carbon cycling models would be improved by incorporating the different effects of stem diameter on woody litter decomposition and below‐ground wood decomposition processes in drylands. A free Plain Language Summary can be found within the Supporting Information of this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Ecology, Wiley, Vol. 111, No. 1 ( 2023-01), p. 198-213
    Abstract: 不同质量的叶和细根凋落物分别位于地表和地下,它们在截然不同的非生物和生物环境中分解。因此,凋落物位置和质量对生态系统碳(C)和氮(N)动态具有很强的影响。然而,有关凋落物碳氮周转如何依赖于植物功能型、器官、性状和凋落物位置之间的相互作用的认识仍不清楚。 在半干旱区毛乌素沙地,选择代表三类植物功能型(草本、豆科灌木和非豆科灌木)的25种植物,将叶凋落物(地表和沙埋)和细根(沙埋)分别进行3、6、9、12、18和24个月的原位分解,研究其分解和碳氮动态。测定叶片和细根初始凋落物的形态和化学性状。 地表叶和沙埋细根凋落物的分解速率( k 值)没有差异,但沙埋细根和沙埋叶凋落物的分解速率快于地表叶凋落物。地表叶凋落物与沙埋叶凋落物的 k 值比随叶片C:N的增加而减小。草本和豆科灌木的细根分解速度比非豆科灌木快,但叶片的分解速度没有显著差异。在相同的碳损失下,沙埋细根的氮损失高于叶;高N或低C:N的豆科灌木比非豆科灌木氮损失更大。与细根和非豆科灌木相比,叶片和豆科灌木的碳氮损失之间的耦合性更强。 总结。在相同的碳释放下豆科凋落物表现出更快的氮释放,表明在氮限制的半干旱生态系统中豆科植物在氮循环中的重要性。凋落物的碳氮释放动态和耦合性受凋落物位置和植物功能型的调节。由于持续的全球变化潜在改变植物群落的功能组成以及地上和地下凋落物的相对数量和质量,因此,凋落物碳氮过程受到位置和功能型调节的这些发现对于发展基于过程的碳氮循环模型具有重要意义。
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...