GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Erba, Alessandro  (3)
  • 2015-2019  (3)
Materialart
Person/Organisation
Sprache
Erscheinungszeitraum
  • 2015-2019  (3)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    American Chemical Society (ACS) ; 2019
    In:  The Journal of Physical Chemistry Letters Vol. 10, No. 13 ( 2019-07-05), p. 3580-3585
    In: The Journal of Physical Chemistry Letters, American Chemical Society (ACS), Vol. 10, No. 13 ( 2019-07-05), p. 3580-3585
    Materialart: Online-Ressource
    ISSN: 1948-7185 , 1948-7185
    Sprache: Englisch
    Verlag: American Chemical Society (ACS)
    Publikationsdatum: 2019
    ZDB Id: 2522838-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2019
    In:  The Journal of Chemical Physics Vol. 151, No. 7 ( 2019-08-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 151, No. 7 ( 2019-08-21)
    Kurzfassung: Formal and computational aspects are discussed for a self-consistent treatment of spin-orbit coupling within the two-component generalization of the Hartree-Fock theory. A molecular implementation into the CRYSTAL program is illustrated, where the standard one-component code (typical of Hartree-Fock and Kohn-Sham spin-unrestricted methodologies) is extended to work in terms of two-component spinors. When passing from a one- to a two-component description, the Fock and density matrices become complex. Furthermore, apart from the αα and ββ diagonal spin blocks, one has also to deal with the αβ and βα off-diagonal spin blocks. These latter blocks require special care as, for open-shell electronic configurations, certain constraints of the one-component code have to be relaxed. This formalism intrinsically allows us to treat local magnetic torque as well as noncollinear magnetization and orbital current-density. An original scheme to impose a specified noncollinear magnetization on each atomic center as a starting guess to the self-consistent procedure is presented. This approach turns out to be essential to surpass local minima in the rugged energy landscape and allows possible convergence to the ground-state solution in all of the discussed test cases.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2019
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2019
    In:  The Journal of Chemical Physics Vol. 151, No. 7 ( 2019-08-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 151, No. 7 ( 2019-08-21)
    Kurzfassung: We revise formal and numerical aspects of collinear and noncollinear density functional theory (DFT) in the context of a two-component self-consistent treatment of spin-orbit coupling (SOC). While the extension of the standard one-component theory to a noncollinear magnetization is formally well-defined within the local density approximation, and therefore results in a numerically stable theory, this is not the case within the generalized gradient approximation (GGA). Previously reported formulations of noncollinear DFT based on GGA exchange-correlation potentials have several limitations: (i) they fail at reducing (either formally or numerically) to the proper collinear limit (i.e., when the magnetization is parallel or antiparallel to the z axis everywhere in space); (ii) they fail at ensuring a quantitative rotational invariance of the total energy and even a qualitative rotational invariance of the spatial distribution of the magnetization when a SOC operator is included in the Hamiltonian; (iii) they are numerically very unstable in regions of small magnetization. All of the above-mentioned problems are here shown (both formally and through test examples) to be solved by using instead a new formulation of noncollinear DFT for GGA functionals, which we call the “signed canonical” theory, as combined with an effective screening algorithm for unstable terms of the exchange-correlation potential in regions of small magnetization. All methods are implemented in the CRYSTAL program and tests are performed on simple molecules to compare the different formulations of noncollinear DFT. All three authors of the article agree to the retraction of the article effective April 16, 2021.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2019
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...