GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Ecology, Wiley, Vol. 106, No. 1 ( 2018-01), p. 296-305
    Abstract: Despite strong climate change in the tropics, little is known about the responses of tropical plants to changing environments. Moreover, while variation in responses to climate change across plant functional groups may help to predict future vegetation dynamics, tropical multi‐species studies are missing. To study plant responses to changes in temperature, we compared the survival, growth and reproduction of 101 herbaceous species originating from the savanna and the submontane vegetation zones in two experimental gardens representing the climate of both zones at Kilimanjaro, Tanzania. Additionally, we tested whether plant functional groups, such as annuals and perennials, shade‐tolerant and shade‐intolerant species, grasses and forbs, and natives and exotics differ in their responses to transplantation. We show that the submontane species in the lower Kilimanjaro area clearly prefer the cooler submontane temperature in terms of survival, growth and reproduction, while savanna plants can grow equally well under both, the submontane and the savanna temperature regimes. This suggests that tropical submontane plants will likely face severe challenges with future climate warming and that the upper distributional limit of savanna plants may be due to biotic interactions rather than to climate. Moreover, we found different responses of grasses and forbs, and natives and exotics to transplantation irrespective of their origin, underlining the importance of considering plant functional groups in climate change research. Synthesis . We demonstrate different responses of tropical submontane and savanna plants to experimental temperature variation. Together with the observed differences between important functional plant groups, this leads us to suggest that strong future changes in vegetation composition on African tropical mountains are likely.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecosphere, Wiley, Vol. 6, No. 3 ( 2015-03), p. art45-art45
    Type of Medium: Online Resource
    ISSN: 2150-8925
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2572257-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 9 ( 2020-09), p. 1495-1514
    Abstract: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in 〉 80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...