GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Emsellem, Eric  (19)
  • Liu, Daizhong  (19)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A191-
    Abstract: We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4  〈  log( M ⋆ / M ⊙ ) 〈 11.0) nearby ( D  ≲ 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1′ by 1′ each) and a total of nearly 15 × 10 6 spectra, covering ∼1.5 × 10 6 independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This ‘cloud-scale’ resolution allows detailed demographics and characterisations of H  II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2–1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H  II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L26-
    Abstract: The earliest stages of star formation occur enshrouded in dust and are not observable in the optical. Here we leverage the extraordinary new high-resolution infrared imaging from JWST to begin the study of dust-embedded star clusters in nearby galaxies throughout the Local Volume. We present a technique for identifying dust-embedded clusters in NGC 7496 (18.7 Mpc), the first galaxy to be observed by the PHANGS–JWST Cycle 1 Treasury Survey. We select sources that have strong 3.3 μ m PAH emission based on a F300M − F335M color excess and identify 67 candidate embedded clusters. Only eight of these are found in the PHANGS-HST optically selected cluster catalog, and all are young (six have SED fit ages of ∼1 Myr). We find that this sample of embedded cluster candidates may significantly increase the census of young clusters in NGC 7496 from the PHANGS-HST catalog; the number of clusters younger than ∼2 Myr could be increased by a factor of 2. Candidates are preferentially located in dust lanes and are coincident with the peaks in the PHANGS-ALMA CO (2–1) maps. We take a first look at concentration indices, luminosity functions, SEDs spanning from 2700 Å to 21 μ m, and stellar masses (estimated to be between ∼10 4 and 10 5 M ⊙ ). The methods tested here provide a basis for future work to derive accurate constraints on the physical properties of embedded clusters, characterize the completeness of cluster samples, and expand analysis to all 19 galaxies in the PHANGS–JWST sample, which will enable basic unsolved problems in star formation and cluster evolution to be addressed.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L22-
    Abstract: We present a high-resolution view of bubbles within the Phantom Galaxy (NGC 628), a nearby (∼10 Mpc), star-forming (∼2 M ⊙ yr −1 ), face-on ( i ∼ 9°) grand-design spiral galaxy. With new data obtained as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS)-JWST treasury program, we perform a detailed case study of two regions of interest, one of which contains the largest and most prominent bubble in the galaxy (the Phantom Void, over 1 kpc in diameter), and the other being a smaller region that may be the precursor to such a large bubble (the Precursor Phantom Void). When comparing to matched-resolution H α observations from the Hubble Space Telescope, we see that the ionized gas is brightest in the shells of both bubbles, and is coincident with the youngest (∼1 Myr) and most massive (∼10 5 M ⊙ ) stellar associations. We also find an older generation (∼20 Myr) of stellar associations is present within the bubble of the Phantom Void. From our kinematic analysis of the H I , H 2 (CO), and H ii gas across the Phantom Void, we infer a high expansion speed of around 15 to 50 km s −1 . The large size and high expansion speed of the Phantom Void suggest that the driving mechanism is sustained stellar feedback due to multiple mechanisms, where early feedback first cleared a bubble (as we observe now in the Precursor Phantom Void), and since then supernovae have been exploding within the cavity and have accelerated the shell. Finally, comparison to simulations shows a striking resemblance to our JWST observations, and suggests that such large-scale, stellar-feedback-driven bubbles should be common within other galaxies.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L9-
    Abstract: We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L18-
    Abstract: JWST/Mid-Infrared Instrument imaging of the nearby galaxies IC 5332, NGC 628, NGC 1365, and NGC 7496 from PHANGS reveals a richness of gas structures that in each case form a quasi-regular network of interconnected filaments, shells, and voids. We examine whether this multiscale network of structure is consistent with the fragmentation of the gas disk through gravitational instability. We use FilFinder to detect the web of filamentary features in each galaxy and determine their characteristic radial and azimuthal spacings. These spacings are then compared to estimates of the most Toomre-unstable length (a few kiloparsecs), the turbulent Jeans length (a few hundred parsecs), and the disk scale height (tens of parsecs) reconstructed using PHANGS–Atacama Large Millimeter/submillimeter Array observations of the molecular gas as a dynamical tracer. Our analysis of the four galaxies targeted in this work indicates that Jeans-scale structure is pervasive. Future work will be essential for determining how the structure observed in gas disks impacts not only the rate and location of star formation but also how stellar feedback interacts positively or negatively with the surrounding multiphase gas reservoir.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L13-
    Abstract: PHANGS–JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25 and 400 pc in NGC 628. MIRI images at 7.7, 10, 11.3, and 21 μ m of NGC 628 are used to generate maps of the filaments in emission, while PHANGS–HST B -band imaging yields maps of dust attenuation features. We quantify the correspondence between filaments traced by MIR thermal continuum/polycyclic aromatic hydrocarbon (PAH) emission and filaments detected via extinction/scattering of visible light; the fraction of MIR flux contained in the DFN; and the fraction of H ii regions, young star clusters, and associations within the DFN. We examine the dependence of these quantities on the physical scale at which the DFN is extracted. With our highest-resolution DFN maps (25 pc filament width), we find that filaments in emission and attenuation are cospatial in 40% of sight lines, often exhibiting detailed morphological agreement; that ∼30% of the MIR flux is associated with the DFN; and that 75%–80% of the star formation in H ii regions and 60% of the mass in star clusters younger than 5 Myr are contained within the DFN. However, the DFN at this scale is anticorrelated with looser associations of stars younger than 5 Myr identified using PHANGS–HST near-UV imaging. We discuss the impact of these findings on studies of star formation and the interstellar medium, and the broad range of new investigations enabled by multiscale maps of the DFN.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L17-
    Abstract: The PHANGS collaboration has been building a reference data set for the multiscale, multiphase study of star formation and the interstellar medium (ISM) in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds (∼5–50 pc). In Cycle 1, PHANGS is conducting an eight-band imaging survey from 2 to 21 μ m of 19 nearby spiral galaxies. Optical integral field spectroscopy, CO(2–1) mapping, and UV-optical imaging for all 19 galaxies have been obtained through large programs with ALMA, VLT-MUSE, and Hubble. PHANGS–JWST enables a full inventory of star formation, accurate measurement of the mass and age of star clusters, identification of the youngest embedded stellar populations, and characterization of the physical state of small dust grains. When combined with Hubble catalogs of ∼10,000 star clusters, MUSE spectroscopic mapping of ∼20,000 H ii regions, and ∼12,000 ALMA-identified molecular clouds, it becomes possible to measure the timescales and efficiencies of the earliest phases of star formation and feedback, build an empirical model of the dependence of small dust grain properties on local ISM conditions, and test our understanding of how dust-reprocessed starlight traces star formation activity, all across a diversity of galactic environments. Here we describe the PHANGS–JWST Treasury survey, present the remarkable imaging obtained in the first few months of science operations, and provide context for the initial results presented in the first series of PHANGS–JWST publications.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L15-
    Abstract: Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk ( R gal ∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks; ScousePy decomposition reveals multiple components with line widths of 〈 σ CO,scouse 〉 ≈ 19 km s −1 and surface densities of 〈 Σ H 2 , scouse 〉 ≈ 800 M ⊙ pc − 2 , similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 258, No. 1 ( 2022-01-01), p. 10-
    Abstract: The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Astrophysical Journal, American Astronomical Society, Vol. 927, No. 1 ( 2022-03-01), p. 9-
    Abstract: The relative distribution of molecular gas and star formation in galaxies gives insight into the physical processes and timescales of the cycle between gas and stars. In this work, we track the relative spatial configuration of CO and H α emission at high resolution in each of our galaxy targets and use these measurements to quantify the distributions of regions in different evolutionary stages of star formation: from molecular gas without star formation traced by H α to star-forming gas, and to H ii regions. The large sample, drawn from the Physics at High Angular resolution in Nearby GalaxieS ALMA and narrowband H α (PHANGS-ALMA and PHANGS-H α ) surveys, spans a wide range of stellar masses and morphological types, allowing us to investigate the dependencies of the gas‒star formation cycle on global galaxy properties. At a resolution of 150 pc, the incidence of regions in different stages shows a dependence on stellar mass and Hubble type of galaxies over the radial range probed. Massive and/or earlier-type galaxies in our sample exhibit a significant reservoir of molecular gas without star formation traced by H α , while lower-mass galaxies harbor substantial H ii regions that may have dispersed their birth clouds or formed from low-mass, more isolated clouds. Galactic structures add a further layer of complexity to the relative distribution of CO and H α emission. Trends between galaxy properties and distributions of gas traced by CO and H α are visible only when the observed spatial scale is ≪500 pc, reflecting the critical resolution requirement to distinguish stages of the star formation process.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...