GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press (CUP)  (2)
  • Ellison, C. Leland  (2)
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2022
    In:  Journal of Plasma Physics Vol. 88, No. 2 ( 2022-04)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 88, No. 2 ( 2022-04)
    Abstract: First-order-accurate degenerate variational integration (DVI) was introduced in Ellison et al. ( Phys. Plasmas , vol. 25, 2018, 052502) for systems with a degenerate Lagrangian, i.e. one in which the velocity-space Hessian is singular. In this paper we introduce second-order-accurate DVI schemes, both with and without non-uniform time stepping. We show that it is not in general possible to construct a second-order scheme with a preserved two-form by composing a first-order scheme with its adjoint, and discuss the conditions under which such a composition is possible. We build two classes of second-order-accurate DVI schemes. We test these second-order schemes numerically on two systems having non-canonical variables, namely the magnetic field line and guiding centre systems. Variational integration for Hamiltonian systems with non-uniform time steps, in terms of an extended phase space Hamiltonian, is generalized to non-canonical variables. It is shown that preservation of proper degeneracy leads to single-step (one-step) methods without parasitic modes, i.e. to non-uniform time step DVIs. This extension applies to second-order-accurate as well as first-order schemes, and can be applied to adapt the time stepping to an error estimate.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 915 ( 2021-05-25)
    Abstract: This paper describes a computational investigation of multimode instability growth and multimaterial mixing induced by multiple shock waves in a high-energy-density (HED) environment, where pressures exceed 1 Mbar. The simulations are based on a series of experiments performed at the National Ignition Facility (NIF) and designed as an HED analogue of non-HED shock-tube studies of the Richtmyer–Meshkov instability and turbulent mixing. A three-dimensional computational modelling framework is presented. It treats many complications absent from canonical non-HED shock-tube flows, including distinct ion and free-electron internal energies, non-ideal equations of state, radiation transport and plasma-state mass diffusivities, viscosities and thermal conductivities. The simulations are tuned to the available NIF data, and traditional statistical quantities of turbulence are analysed. Integrated measures of turbulent kinetic energy and enstrophy both increase by over an order of magnitude due to reshock. Large contributions to enstrophy production during reshock are seen from both the baroclinic source and enstrophy–dilatation terms, highlighting the significance of fluid compressibility in the HED regime. Dimensional analysis reveals that Reynolds numbers and diffusive Péclet numbers in the HED flow are similar to those in a canonical non-HED analogue, but conductive Péclet numbers are much smaller in the HED flow due to efficient thermal conduction by free electrons. It is shown that the mechanism of electron thermal conduction significantly softens local spanwise gradients of both temperature and density, which causes a minor but non-negligible decrease in enstrophy production and small-scale mixing relative to a flow without this mechanism.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...