GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 109, No. 9 ( 2007-05-01), p. 3687-3696
    Abstract: The Homeobox (Hox) transcription factors are important regulators of normal and malignant hematopoiesis because they control proliferation, differentiation, and self-renewal of hematopoietic cells at different levels of the hematopoietic hierarchy. In transgenic mice we show that the expression of HOXA10 is tightly regulated by doxycycline. Intermediate concentrations of HOXA10 induced a 15-fold increase in the repopulating capacity of hematopoietic stem cells (HSCs) after 13 days of in vitro culture. Notably, the proliferation induction of HSC by HOXA10 was dependent on the HOXA10 concentration, because high levels of HOXA10 had no effect on HSC proliferation. Furthermore, high levels of HOXA10 blocked erythroid and megakaryocyte development, demonstrating that tight regulation of HOXA10 is critical for normal development of the erythroid and megakaryocytic lineages. The HOXA10-mediated effects on hematopoietic cells were associated with altered expression of genes that govern stem-cell self-renewal and lineage commitment (eg, hepatic leukemia factor [HlF] , Dickkopf-1 [Dkk-1], growth factor independent-1 [Gfi-1] , and Gata-1). Interestingly, binding sites for HOXA10 were found in HLF, Dkk-1, and Gata-1, and Dkk-1 and Gfi-1 were transcriptionally activated by HOXA10. These findings reveal novel molecular pathways that act downstream of HOXA10 and identify HOXA10 as a master regulator of postnatal hematopoietic development.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 103, No. 11 ( 2004-06-01), p. 4126-4133
    Abstract: Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 104, No. 11 ( 2004-11-16), p. 2773-2773
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 2773-2773
    Abstract: Several Homeobox transcription factors (Hox) have been shown to be highly involved in the complex regulation of hematopoiesis, controlling proliferation, differentiation and self-renewal capacity of hematopoietic stem cells (HSC). One of these genes, HOXA10, has been shown to be expressed in primitive hematopoietic cells and meyolid progenitors, but is downregulated as the cells mature. The expression of HOXA10 is found in almost all types of human acute myeloid leukemia (AML) and overexpression of HOXA10 in mice by a retroviral vector induces proliferation of myeloid progenitors, that eventual leads to AML. In order to further study the role of HOXA10 in hematopoiesis and to ask whether the effect of HOXA10 is dose dependent, we generated an inducible system based on the tetracycline transactivator system, by mating our previously published transgenic HOXA10 mouse model with the Rosa26rtTA mouse. The Rosa locus is transcriptionally active in many organs including all hematopoietic tissues. Here we show that we can induce the expression of HOXA10 in the bone marrow of inducible mice in vivo by administrating doxycycline and no leakiness was detected in uninduced bone marrow. Double transgenic mice were born at normal ratios and hematopoiesis was normal prior to induction. When the gene was systemically induced by administration of doxycycline (2 mg/ml) in the drinking water the mice died within one to two weeks. Analysis showed small hemorrhages (intestine, skin), low hemoglobin level (HOXA10: 82±21 g/L, wt: 130±4 g/L), low RBC (HOXA10: 5.9±1.7x1012/L, wt: 8.67±0.4x1012/L) and the platelet count was severely reduced (A10: 33±26x109/L, wt: 845±121x109/L, data from three experiments n=6, p 〈 0.002). In order to further study the effect of HoxA10 in hematopoietic cells we transplanted inducible HOXA10 bone marrow cells to lethally irradiated wild type recipients. The expression of HOXA10 was induced as above and analysis revealed severe anemia 3–4 weeks after induction with reduced hemoglobin level (HOXA10: 71±18 g/L wt: 124±6 g/L), and low RBC count (HOXA10: 4.8±1.3x1012/L, wt: 8.1±0.7x1012/L, data from three experiments, n=8, p 〈 0.001). When the mice became terminally ill, they were sacrificed, displaying splenomegaly with immature erythrocytes at different stages of development indicating a block in erythroid maturation. In a separate experiment a lower dose (1.5x106) of inducible HOXA10 BM was transplanted. Most of these mice survived but displayed a reduction in hemoglobin levels at three weeks post BMT. Linage analysis showed that high HOXA10 expression caused a block in CD3+ T-cells (HOXA10: 2.88±1.59%, uninduced: 17±1%, wt: 19±1% p 〈 0.0001) and an increase in the proportion of Gr1/Mac1+ positive cells (HOXA10: 45±5%, uninduced: 18±4%, wt: 18±5% p 〈 0.0001). In summary, we present a new model system for studying the effect of a transcription factor in vivo and demonstrate that high levels of HOXA10 cause a block in erythroid development and a severe anemia. Furthermore, high levels of HOXA10 cause reduced numbers of T-cells and increased myelopoiesis, while B cell development is unaffected.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 102, No. 9 ( 2003-11-01), p. 3129-3135
    Abstract: Studies in vitro implicate transforming growth factor β (TGF-β) as a key regulator of hematopoiesis with potent inhibitory effects on progenitor and stem cell proliferation. In vivo studies have been hampered by early lethality of knock-out mice for TGF-β isoforms and the receptors. To directly assess the role of TGF-β signaling for hematopoiesis and hematopoietic stem cell (HSC) function in vivo, we generated a conditional knock-out model in which a disruption of the TGF-β type I receptor (TβRI) gene was induced in adult mice. HSCs from induced mice showed increased proliferation recruitment when cultured as single cells under low stimulatory conditions in vitro, consistent with an inhibitory role of TGF-β in HSC proliferation. However, induced TβRI null mice show normal in vivo hematopoiesis with normal numbers and differentiation ability of hematopoietic progenitor cells. Furthermore HSCs from TβRI null mice exhibit a normal cell cycle distribution and do not differ in their ability long term to repopulate primary and secondary recipient mice following bone marrow transplantation. These findings challenge the classical view that TGF-β is an essential negative regulator of hematopoietic stem cells under physiologic conditions in vivo.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2003
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...