GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SAGE Publications  (1)
  • Eckhart, Andrea  (1)
Material
Publisher
  • SAGE Publications  (1)
Language
Years
  • 1
    In: Journal of Diabetes Science and Technology, SAGE Publications, Vol. 9, No. 1 ( 2015-01-01), p. 69-76
    Abstract: The oral glucose tolerance test (OGTT) is the only method to diagnose patients having impaired glucose tolerance (IGT), but its use has diminished considerably in recent years. Metabolomic profiling studies have identified a number of metabolites whose fasting levels are associated with dysglycemia and type 2 diabetes. These metabolites may serve as the basis of an alternative test for IGT. Method: Using the stable isotope dilution technique, quantitative assays were developed for 23 candidate biomarker metabolites. These metabolites were measured in fasting plasma samples taken just prior to an OGTT from 1623 nondiabetic subjects: 955 from the Relationship between Insulin Sensitivity and Cardiovascular Disease Study (RISC Study; 11.7% IGT) and 668 subjects from the Diabetes Mellitus and Vascular Health Initiative (DMVhi) cohort from the DEXLIFE project (11.8% IGT). The associations between metabolites, anthropometric, and metabolic parameters and 2hPG values were assessed by Pearson correlation coefficients and Random Forest classification analysis to rank variables for their ability to distinguish IGT from normal glucose tolerance (NGT). Multivariate logistic regression models for estimating risk of IGT were developed and evaluated using AUCs calculated from the corresponding ROC curves. Results: A model based on the fasting plasma levels of glucose, α-hydroxybutyric acid, β-hydroxybutyric acid, 4-methyl-2-oxopentanoic acid, linoleoylglycerophosphocholine, oleic acid, serine and vitamin B5 was optimized in the RISC cohort (AUC = 0.82) and validated in the DMVhi cohort (AUC = 0.83). Conclusions: A novel, all-metabolite-based test is shown to be a discriminate marker of IGT. It requires only a single fasted blood draw and may serve as a more convenient surrogate for the OGTT or as a means of identifying subjects likely to be IGT.
    Type of Medium: Online Resource
    ISSN: 1932-2968 , 1932-2968
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2015
    detail.hit.zdb_id: 2467312-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...