GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Bone and Mineral Research, Wiley, Vol. 34, No. 8 ( 2019-08), p. 1407-1418
    Abstract: Estrogen deficiency is a seminal mechanism in the pathogenesis of osteoporosis. Mounting evidence, however, establishes that cellular senescence, a fundamental mechanism that drives multiple age‐related diseases, also causes osteoporosis. Recently, we systematically identified an accumulation of senescent cells, characterized by increased p16 Ink4a and p21 Cip1 levels and development of a senescence‐associated secretory phenotype (SASP), in mouse bone/marrow and human bone with aging. We then demonstrated that elimination of senescent cells prevented age‐related bone loss using multiple approaches, eg, treating old mice expressing a “suicide” transgene, INK‐ATTAC , with AP20187 to induce apoptosis of p16 Ink4a ‐senescent cells or periodically treating old wild‐type mice with “senolytics,” ie, drugs that eliminate senescent cells. Here, we investigate a possible role for estrogen in the regulation of cellular senescence using multiple approaches. First, sex steroid deficiency 2 months after ovariectomy (OVX, n  = 15) or orchidectomy (ORCH, n  = 15) versus sham surgery (SHAM, n  = 15/sex) in young adult (4‐month‐old) wild‐type mice did not alter senescence biomarkers or induce a SASP in bone. Next, in elderly postmenopausal women, 3 weeks of estrogen therapy ( n  = 10; 74 ± 5 years) compared with no treatment ( n  = 10; 78 ± 5 years) did not alter senescence biomarkers or the SASP in human bone biopsies. Finally, young adult (4‐month‐old) female INK‐ATTAC mice were randomized ( n  = 17/group) to SHAM+Vehicle, OVX+Vehicle, or OVX+AP20187 for 2 months. As anticipated, OVX+Vehicle caused significant trabecular/cortical bone loss compared with SHAM+Vehicle. However, treatment with AP20187, which eliminates senescent cells in INK‐ATTAC mice, did not rescue the OVX‐induced bone loss or alter senescence biomarkers. Collectively, our data establish independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis, which has important implications for testing novel senolytics for skeletal efficacy, as these drugs will need to be evaluated in preclinical models of aging as opposed to the current FDA model of prevention of OVX‐induced bone loss. © 2019 American Society for Bone and Mineral Research.
    Type of Medium: Online Resource
    ISSN: 0884-0431 , 1523-4681
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2008867-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Applied Laboratory Medicine, Oxford University Press (OUP), Vol. 5, No. 3 ( 2020-05-01), p. 558-568
    Abstract: Advanced glycation end products (AGEs) are formed via the nonenzymatic glycation of sugars with amino acids. Two AGEs, Nε-(1-carboxymethyl)-L-Lysine (CML) and pentosidine, have been observed to be elevated in subjects suffering from a multitude of chronic disease states, and accumulation of these compounds may be related to the pathophysiology of disease progression and aging. Methods We describe here the development and validation of a specific and reproducible LC-MS/MS method to quantify CML and pentosidine in human serum with lower limits of quantitation of 75 ng/mL and 5 ng/mL, respectively. The analyte calibration curve exhibited excellent linearity at a range of 0–10 900 ng/mL for CML and 0–800 ng/mL for pentosidine. High-low linearity of 5 serum pairs was assessed, with a mean recovery of 103% (range 94—116%) for CML, and 104% (range 97—116%) for pentosidine. Results Serum concentrations of CML and pentosidine were quantified in 30 control and 30 subjects with chronic renal insufficiency. A significant increase in both analytes was observed in renal failure compared to control subjects (2.1-fold and 8.4-fold, respectively; P  & lt; 0.001 for both). In a separate cohort of 49 control versus 95 subjects with type 2 diabetes mellitus (T2DM), serum CML but not serum pentosidine, was significantly elevated in the T2DM patients, and CML was also correlated with glycemic control, as assessed by hemoglobin A1c (r = 0.34, P  & lt; 0.001). Conclusions These mass spectroscopy-based assays for serum CML and pentosidine should be useful in accurately evaluating circulating levels of these key AGEs in various disease states.
    Type of Medium: Online Resource
    ISSN: 2576-9456 , 2475-7241
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...