GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Eckerstorfer, Paul  (1)
  • Medicine  (1)
Material
Language
Years
Subjects(RVK)
  • Medicine  (1)
RVK
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 182, No. 4 ( 2009-02-15), p. 2160-2167
    Abstract: The current model for regulation of the Src family kinase member Lck postulates a strict correlation between structural condensation of the kinase backbone and catalytic activity. The key regulatory tyrosine 505, when phosphorylated, interacts with the Src homology 2 domain on the same molecule, effectively suppressing tyrosine kinase activity. Dephosphorylation of Tyr505 upon TCR engagement is supposed to lead to unfolding of the kinase structure and enhanced kinase activity. Studies on the conformation-activity relationship of Lck in living cells have not been possible to date because of the lack of tools providing spatiotemporal resolution of conformational changes. We designed a biochemically active, conformation-sensitive Förster resonance energy transfer biosensor of human Lck using the complete kinase backbone. Live cell imaging in Jurkat cells demonstrated that our biosensor performed according to Src family kinase literature. A Tyr505 to Phe mutation opened the structure of the Lck sensor, while changing the autophosphorylation site Tyr394 to Phe condensed the molecule. The tightly packed structure of a high-affinity YEEI tail mutant showed that under steady-state conditions the bulk of Lck molecules exist in a mean conformational configuration. Although T cell activation commenced normally, we could not detect a change in the conformational status of our Lck biosensor during T cell activation. Together with biochemical data we conclude that during T cell activation, Lck is accessible to very subtle regulatory mechanisms without the need for acute changes in Tyr505 and Tyr394 phosphorylation and conformational alterations.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...