GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Eber, Matthew R.  (2)
  • McCauley, Laurie K.  (2)
  • Soki, Fabiana N.  (2)
  • 2010-2014  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 10 ( 2012-05-15), p. 2522-2532
    Abstract: A number of cancers predominantly metastasize to bone, due to its complex microenvironment and multiple types of constitutive cells. Prostate cancer especially has been shown to localize preferentially to bones with higher marrow cellularity. Using an experimental prostate cancer metastasis model, we investigated the effects of cyclophosphamide, a bone marrow–suppressive chemotherapeutic drug, on the development and growth of metastatic tumors in bone. Priming the murine host with cyclophosphamide before intracardiac tumor cell inoculation was found to significantly promote tumor localization and subsequent growth in bone. Shortly after cyclophosphamide treatment, there was an abrupt expansion of myeloid lineage cells in the bone marrow and the peripheral blood, associated with increases in cytokines with myelogenic potential such as C-C chemokine ligand (CCL)2, interleukin (IL)-6, and VEGF-A. More importantly, neutralizing host-derived murine CCL2, but not IL-6, in the premetastatic murine host significantly reduced the prometastatic effects of cyclophosphamide. Together, our findings suggest that bone marrow perturbation by cytotoxic chemotherapy can contribute to bone metastasis via a transient increase in bone marrow myeloid cells and myelogenic cytokines. These changes can be reversed by inhibition of CCL2. Cancer Res; 72(10); 2522–32. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 4 ( 2014-01-28), p. 1545-1550
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 4 ( 2014-01-28), p. 1545-1550
    Abstract: Cellular subpopulations in the bone marrow play distinct and unexplored functions in skeletal homeostasis. This study delineated a unique role of osteal macrophages in bone and parathyroid hormone (PTH)-dependent bone anabolism using murine models of targeted myeloid-lineage cell ablation. Depletion of c-fms + myeloid lineage cells [via administration of AP20187 in the macrophage Fas-induced apoptosis (MAFIA) mouse model] reduced cortical and trabecular bone mass and attenuated PTH-induced trabecular bone anabolism, supporting the positive function of macrophages in bone homeostasis. Interestingly, using a clodronate liposome model with targeted depletion of mature phagocytic macrophages an opposite effect was found with increased trabecular bone mass and increased PTH-induced anabolism. Apoptotic cells were more numerous in MAFIA versus clodronate-treated mice and flow cytometric analyses of myeloid lineage cells in the bone marrow showed that MAFIA mice had reduced CD68 + cells, whereas clodronate liposome-treated mice had increased CD68 + and CD163 + cells. Clodronate liposomes increased efferocytosis (clearance of apoptotic cells) and gene expression associated with alternatively activated M2 macrophages as well as expression of genes associated with bone formation including Wnt3a , Wnt10b , and Tgfb1 . Taken together, depletion of early lineage macrophages resulted in osteopenia with blunted effects of PTH anabolic actions, whereas depletion of differentiated macrophages promoted apoptotic cell clearance and transformed the bone marrow to an osteogenic environment with enhanced PTH anabolism. These data highlight a unique function for osteal macrophages in skeletal homeostasis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...