GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Ecology, Wiley, Vol. 102, No. 2 ( 2014-03), p. 437-446
    Abstract: Plant communities and their ecosystem functions are expected to be more resilient to future habitat fragmentation and deterioration if the species comprising the communities have a wide range of dispersal and persistence strategies. However, the extent to which the diversity of dispersal and persistence traits in plant communities is determined by the current and historical characteristics of sites and their surrounding landscape has yet to be explored. Using quantitative information on long‐distance seed dispersal potential by wind and animals (dispersal in space) and on species' persistence/longevity (dispersal in time), we (i) compared levels of dispersal and persistence trait diversity (functional richness, FR ic, and functional divergence, FD iv) in seminatural grassland plant communities with those expected by chance, and (ii) quantified the extent to which trait diversity was explained by current and historical landscape structure and local management history – taking into account spatial and phylogenetic autocorrel. Null model analysis revealed that more grassland communities than expected had a level of trait diversity that was lower or higher than predicted, given the level of species richness. Both the range ( FR ic) and divergence ( FD iv) of dispersal and persistence trait values increased with grassland age. FD iv was mainly explained by the interaction between current grazing intensity and the amount of grassland habitat in the surrounding landscape in 1938. Synthesis . The study suggests that the variability of dispersal and persistence traits in grassland plant communities is driven by deterministic assembly processes, with both history and current management (and their interactions), playing a major role as determinants of trait diversity. While a long continuity of grazing management is likely to have promoted the diversity of dispersal and persistence traits in present‐day grasslands, communities in sites that are well grazed at the present day, and were also surrounded by large amounts of grassland in the past, showed the highest diversity of dispersal and persistence strategies. Our results indicate that the historical context of a site within a landscape will influence the extent to which current grazing management is able to maintain a diversity of dispersal and persistence strategies and buffer communities (and their associated functions) against continuing habitat fragmentation.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oecologia, Springer Science and Business Media LLC, Vol. 174, No. 2 ( 2014-2), p. 533-543
    Type of Medium: Online Resource
    ISSN: 0029-8549 , 1432-1939
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1462019-4
    detail.hit.zdb_id: 123369-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Ecology, Wiley, Vol. 101, No. 4 ( 2013-07), p. 857-866
    Abstract: Theory predicts that the processes generating biodiversity after disturbance will change during succession. Comparisons of phylogenetic and functional (alpha and beta) diversity with taxonomic diversity can provide insights into the extent to which community assembly is driven by deterministic or stochastic processes, but comparative approaches have yet to be applied to successional systems. We characterized taxonomic, phylogenetic and functional plant (alpha and beta) diversity within and between four successional stages in a 〉 270‐year‐long arable‐to‐grassland chronosequence. Null models were used to test whether functional and phylogenetic turnover differed from random expectations, given the levels of species diversity. The three facets of diversity showed different patterns of change during succession. Between early and early‐mid succession, species richness increased but there was no increase in functional or phylogenetic diversity. Higher than predicted levels of functional similarity between species within the early and early‐mid successional stages, indicate that abiotic filters have selected for sets of functionally similar species within sites. Between late‐mid and late succession, there was no further increase in species richness, but a significant increase in functional alpha diversity, suggesting that functionally redundant species were replaced by functionally more dissimilar species. Functional turnover between stages was higher than predicted, and higher than within‐stage turnover, indicating that different assembly processes act at different successional stages. Synthesis . Analysis of spatial and temporal turnover in different facets of diversity suggests that deterministic processes generate biodiversity during post‐disturbance ecosystem development and that the relative importance of assembly processes has changed over time. Trait‐mediated abiotic filtering appears to play an important role in community assembly during the early and early‐mid stages of arable‐to‐grassland succession, whereas the relative importance of competitive exclusion appears to have increased towards the later successional stages. Phylogenetic diversity provided a poor reflection of functional diversity and did not contribute to inferences about underlying assembly processes. Functionally deterministic assembly suggests that it may be possible to predict future post‐disturbance changes in biodiversity, and associated ecosystem attributes, on the basis of species’ functional traits but not phylogeny.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Royal Society ; 2016
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 283, No. 1834 ( 2016-07-13), p. 20160275-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 283, No. 1834 ( 2016-07-13), p. 20160275-
    Abstract: Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se . This has, however, never been extended to species-rich forests and host–parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host–parasitoid networks were independent of the environment. Our study indicates that host–parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2016
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Ecology and Evolution Vol. 7, No. 24 ( 2017-12), p. 11079-11091
    In: Ecology and Evolution, Wiley, Vol. 7, No. 24 ( 2017-12), p. 11079-11091
    Abstract: Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: New Phytologist, Wiley, Vol. 202, No. 3 ( 2014-05), p. 864-873
    Abstract: Biodiversity loss may alter ecosystem processes, such as herbivory, a key driver of ecological functions in species‐rich (sub)tropical forests. However, the mechanisms underlying such biodiversity effects remain poorly explored, as mostly effects of species richness – a very basic biodiversity measure – have been studied. Here, we analyze to what extent the functional and phylogenetic diversity of woody plant communities affect herbivory along a diversity gradient in a subtropical forest. We assessed the relative effects of morphological and chemical leaf traits and of plant phylogenetic diversity on individual‐level variation in herbivory of dominant woody plant species across 27 forest stands in south‐east C hina. Individual‐level variation in herbivory was best explained by multivariate, community‐level diversity of leaf chemical traits, in combination with community‐weighted means of single traits and species‐specific phylodiversity measures. These findings deviate from those based solely on trait variation within individual species. Our results indicate a strong impact of generalist herbivores and highlight the need to assess food‐web specialization to determine the direction of biodiversity effects. With increasing plant species loss, but particularly with the concomitant loss of functional and phylogenetic diversity in these forests, the impact of herbivores will probably decrease – with consequences for the herbivore‐mediated regulation of ecosystem functions.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...