GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • Durden, Brittany  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
  • 1
    In: Oncogenesis, Springer Science and Business Media LLC, Vol. 8, No. 12 ( 2019-11-18)
    Abstract: Presence of quiescent, therapy evasive population often described as cancer stem cells (CSC) or tumor initiating cells (TIC) is often attributed to extreme metastasis and tumor recurrence. This population is typically enriched in a tumor as a result of microenvironment or chemotherapy induced stress. The TIC population adapts to this stress by turning on cell cycle arrest programs that is a “fail-safe” mechanism to prevent expansion of malignant cells to prevent further injury. Upon removal of the “stress” conditions, these cells restart their cell cycle and regain their proliferative nature thereby resulting in tumor relapse. Growth Arrest Specific 5 (GAS5) is a long-non-coding RNA that plays a vital role in this process. In pancreatic cancer, CD133+ population is a typical representation of the TIC population that is responsible for tumor relapse. In this study, we show for the first time that emergence of CD133+ population coincides with upregulation of GAS5, that reprograms the cell cycle to slow proliferation by inhibiting GR mediated cell cycle control. The CD133+ population further routed metabolites like glucose to shunt pathways like pentose phosphate pathway, that were predominantly biosynthetic in spite of being quiescent in nature but did not use it immediately for nucleic acid synthesis. Upon inhibiting GAS5, these cells were released from their growth arrest and restarted the nucleic acid synthesis and proliferation. Our study thus showed that GAS5 acts as a molecular switch for regulating quiescence and growth arrest in CD133+ population, that is responsible for aggressive biology of pancreatic tumors.
    Type of Medium: Online Resource
    ISSN: 2157-9024
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2674437-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 10, No. 2 ( 2019-02-12)
    Abstract: Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) signaling have been shown to be dysregulated in multiple cancer types. Glucose regulatory protein 78 (GRP78), the master regulator of the UPR, plays a role in proliferation, invasion, and metastasis in cancer. Cancer stem cells (CSCs) make up a crucial component of the tumor heterogeneity in pancreatic cancer, as well as other cancers. “Stemness” in pancreatic cancer defines a population of cells within the tumor that have increased therapeutic resistance as well as survival advantage. In the current study, we investigated how GRP78 was responsible for maintaining “stemness” in pancreatic cancer thereby contributing to its aggressive biology. We determined that GRP78 downregulation decreased clonogenicity and self-renewal properties in pancreatic cancer cell lines in vitro. In vivo studies resulted in delayed tumor initiation frequency, as well as smaller tumor volume in the shGRP78 groups. Additionally, downregulation of GRP78 resulted in dysregulated fatty acid metabolism in pancreatic tumors as well as the cells. Further, our results showed that shGRP78 dysregulates multiple transcriptomic and proteomic pathways that involve DNA damage, oxidative stress, and cell death, that were reversed upon treatment with a ROS inhibitor, N-acetylcysteine. This study thus demonstrates for the first time that the heightened UPR in pancreatic cancer may be responsible for maintenance of the “stemness” properties in these cells that are attributed to aggressive properties like chemoresistance and metastasis.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...