GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 14, No. 17 ( 2022-09-02), p. 10982-
    Abstract: In this research, a numerical analysis is accomplished aiming to investigate the effects of adding a new design fins arrangement to a vertical triplex tube latent heat storage system during the melting mechanism and evaluate the natural convection effect using Ansys Fluent software. In the triplex tube, phase change material (PCM) is included in the middle tube, while the heat transfer fluid (HTF) flows through the interior and exterior pipes. The proposed fins are triangular fins attached to the pipe inside the PCM domain in two different ways: (1) the base of the triangular fins is connected to the pipe, (2) the tip of the triangular fins is attached to the pipe and the base part is directed to the PCM domain. The height of the fins is calculated to have a volume equal to that of the uniform rectangular fins. Three different cases are considered as the final evaluation toward the best case as follows: (1) the uniform fin case (case 3), (2) the reverse triangular fin case with a constant base (case 12), (3) the reverse triangular fin case with a constant height (case 13). The numerical results show that the total melting times for cases 3 and 12 increase by 4.0 and 10.1%, respectively, compared with that for case 13. Since the PCM at the bottom of the heat storage unit melts slower due to the natural convection effect, a flat fin is added to the bottom of the heat storage unit for the best case compared with the uniform fin cases. Furthermore, the heat storage rates for cases 3 and 12 are reduced by 4.5 and 8.5%, respectively, compared with that for case 13, which is selected as the best case due to having the lowest melting time (1978s) and the highest heat storage rate (81.5 W). The general outcome of this research reveals that utilizing the tringle fins enhances the thermal performance and the phase change rate.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sustainability, MDPI AG, Vol. 14, No. 16 ( 2022-08-18), p. 10253-
    Abstract: Concerns about the environment, the cost of energy, and safety mean that low-energy cold-mix asphalt materials are very interesting as a potential replacement for present-day hot mix asphalt. The main disadvantage of cold bituminous emulsion mixtures is their poor early life strength, meaning they require a long time to achieve mature strength. This research work aims to study the protentional utilization of waste and by-product materials as a filler in cold emulsion mixtures with mechanical properties comparable to those of traditional hot mix asphalt. Accordingly, cold mix asphalt was prepared to utilize paper sludge ash (PSA) and cement kiln dust (CKD) as a substitution for conventional mineral filler with percentages ranging from 0–6% and 0–4%, respectively. Test results have shown that the incorporation of such waste materials reflected a significant improvement in the mixture’s stiffness and strength evolution. The cementitious reactivity of PSA produces bonding inside the mixtures, while CKD is used as an additive to activate the hydration process of PSA. Therefore, based on the results, it will be easier to build cold mixtures by shortening the amount of time needed to reach full curing conditions.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...