GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rockefeller University Press  (2)
  • Drapeau, P  (2)
Material
Publisher
  • Rockefeller University Press  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Rockefeller University Press ; 1988
    In:  The Journal of general physiology Vol. 91, No. 2 ( 1988-02-01), p. 289-303
    In: The Journal of general physiology, Rockefeller University Press, Vol. 91, No. 2 ( 1988-02-01), p. 289-303
    Abstract: Cytosolic pH (pHi) was measured in presynaptic nerve terminals isolated from rat brain (synaptosomes) using a fluorescent pH indicator, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). The synaptosomes were loaded with BCECF by incubation with the membrane-permanent acetoxy-methyl ester derivative of BCECF, which is hydrolyzed by intracellular esterases to the parent compound. pHi was estimated by calibrating the fluorescence signal after permeabilizing the synaptosomal membrane by two different methods. Synaptosomes loaded with 15-90 microM BCECF were estimated to have a pHi of 6.94 +/- 0.02 (mean +/- standard error; n = 54) if the fluorescence signal was calibrated after permeabilizing with digitonin; a similar value was obtained using synaptosomes loaded with 10 times less BCECF (6.9 +/- 0.1; n = 5). When the fluorescence signal was calibrated by permeabilizing the synaptosomal membrane to H+ with gramicidin and nigericin, pHi was estimated to be 7.19 +/- 0.03 (n = 12). With the latter method, pHi = 6.95 +/- 0.09 (n = 14) when the synaptosomes were loaded with 10 times less BCECF. Thus, pHi in synaptosomes was approximately 7.0 and could be more precisely monitored using the digitonin calibration method at higher BCECF concentrations. When synaptosomes were incubated in medium containing 20 mM NH4Cl and then diluted into NH4Cl-free medium, pHi immediately acidified to a level of approximately 6.6. After the acidification, pHi recovered over a period of a few minutes. The buffering capacity of the synaptosomes was estimated to be approximately 50 mM/pH unit. Recovery was substantially slowed by incubation in an Na-free medium, by the addition of amiloride (KI = 3 microM), and by abolition of the Nao/Nai gradient. pHi and its recovery after acidification were not affected by incubation in an HCO3-containing medium; disulfonic stilbene anion transport inhibitors (SITS and DIDS, 1 mM) and replacement of Cl with methylsulfonate did not affect the rate of recovery of pHi. It appears that an Na+/H+ antiporter is the primary regulator of pHi in mammalian brain nerve terminals.
    Type of Medium: Online Resource
    ISSN: 0022-1295 , 1540-7748
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1988
    detail.hit.zdb_id: 1477246-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Rockefeller University Press ; 1988
    In:  The Journal of general physiology Vol. 91, No. 2 ( 1988-02-01), p. 305-315
    In: The Journal of general physiology, Rockefeller University Press, Vol. 91, No. 2 ( 1988-02-01), p. 305-315
    Abstract: We examined the effects of extracellular and intracellular pH changes on the influx of radioactive 45Ca, the concentration of ionized Ca (pCai) as monitored with the Ca-sensitive fluorescent indicator fura-2, and the efflux of dopamine in presynaptic nerve endings (synaptosomes) isolated from rat brain corpora striata and preloaded with [3H]dopamine. Cytosolic pH (pHi) was monitored by loading the synaptosomes with the H+-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) (see Nachshen, D. A., and P. Drapeau, 1988, Journal of General Physiology, 91:289-303). An abrupt decrease of the pH of the external medium, from 7.4 to 5.5, produced a slow decrease of pHi (over a 5-min period) from an initial value of 7.2 to a steady state level of approximately 5.8. When 20 mM acetate was present in acidic media, pHi dropped as fast as could be measured (within 2 s) t o a level similar to that reached (more slowly) in the absence of acetate. It was therefore possible to lower pHi over short time periods to different levels depending on whether or not acetate was present upon extracellular acidification. Extracellular acidification to pH 5.5 (in the absence of acetate) had no significant effect on pCai and dopamine release over a 30-s period (pHi = 6.4). Acidification in the presence of acetate lowered pHi to 5.8 without affecting pCai, but dopamine efflux increased approximately 20-fold. This increase in basal dopamine release was also observed in the absence of extracellular Ca. Thus, intraterminal, but not extracellular, acidification could stimulate the efflux of dopamine in a Ca-independent manner. The high Q10 (3.6) of acid-stimulated dopamine efflux in the presence of nomifensine (which blocks the dopamine carrier) was consistent with an activation of vesicular dopamine release by H+. When synaptosomes were both depolarized for 2 s in high-K (77.5 mM) solutions and acidified (in the absence of acetate), there was a parallel block of 45Ca entry and evoked dopamine release (50% block at pH 6.0 with 0.2 mM external Ca). When acetate was included in the acidic media to further reduce pHi, Ca entry remained blocked, but evoked dopamine release was increased. Therefore, extracellular, but not cytosolic, acidification inhibited the release of dopamine by blocking voltage-gated Ca channels. The stimulation by cytosolic acidification of both basal and evoked dopamine release suggests that vesicular release in resting and depolarized synaptosomes was directly activated by cytoplasmic H+.
    Type of Medium: Online Resource
    ISSN: 0022-1295 , 1540-7748
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1988
    detail.hit.zdb_id: 1477246-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...