GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 32, No. 12 ( 2012-12), p. 2892-2900
    Abstract: Asymmetric dimethylarginine is an endogenous inhibitor of NO synthesis that may mediate cardiovascular disease. Alanine-glyoxylate aminotransferase-2 (AGXT2) has been proposed to degrade asymmetric dimethylarginine. We investigated the significance of AGXT2 in methylarginine metabolism in vivo and examined the effect of this enzyme on blood pressure. Methods and Results— In isolated mouse kidney mitochondria, we show asymmetric dimethylarginine deamination under physiological conditions. We demonstrate increased asymmetric dimethylarginine, reduced NO, and hypertension in an AGXT2 knockout mouse. We provide evidence for a role of AGXT2 in methylarginine metabolism in humans by demonstrating an inverse relationship between renal (allograft) gene expression and circulating substrate levels and an association between expression and urinary concentrations of the product. Finally, we examined data from a meta-analysis of blood pressure genome-wide association studies. No genome-wide significance was observed, but taking a hypothesis-driven approach, there was a suggestive association between the T allele at rs37369 (which causes a valine-isoleucine substitution and altered levels of AGXT2 substrate) and a modest increase in diastolic blood pressure ( P =0.0052). Conclusion— Although the effect of variation at rs37369 needs further study, these findings suggest that AGXT2 is an important regulator of methylarginines and represents a novel mechanism through which the kidney regulates blood pressure.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2012
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 35, No. 6 ( 2015-06), p. 1382-1392
    Abstract: Nitric oxide is a key to numerous physiological and pathophysiological processes. Nitric oxide production is regulated endogenously by 2 methylarginines, asymmetric dimethylarginine (ADMA) and monomethyl- l -arginine. The enzyme that specifically metabolizes asymmetric dimethylarginine and monomethyl- l -arginine is dimethylarginine dimethylaminohydrolase (DDAH). The first isoform dimethylarginine dimethylaminohydrolase 1 has previously been shown to be an important regulator of methylarginines in both health and disease. This study explores for the first time the role of endogenous dimethylarginine dimethylaminohydrolase 2 in regulating cardiovascular physiology and also determines the functional impact of dimethylarginine dimethylaminohydrolase 2 deletion on outcome and immune function in sepsis. Approach and Results— Mice, globally deficient in Ddah2, were compared with their wild-type littermates to determine the physiological role of Ddah2 using in vivo and ex vivo assessments of vascular function. We show that global knockout of Ddah2 results in elevated blood pressure during periods of activity (mean [SEM], 118.5 [1.3] versus 112.7 [1.1] mm Hg; P =0.025) and changes in vascular responsiveness mediated by changes in methylarginine concentration, mean myocardial tissue asymmetric dimethylarginine (SEM) was 0.89 (0.06) versus 0.67 (0.05) μmol/L ( P =0.02) and systemic nitric oxide concentrations. In a model of severe polymicrobial sepsis, Ddah2 knockout affects outcome (120-hour survival was 12% in Ddah2 knockouts versus 53% in wild-type animals; P 〈 0.001). Monocyte-specific deletion of Ddah2 results in a similar pattern of increased severity to that seen in globally deficient animals. Conclusions— Ddah2 has a regulatory role both in normal physiology and in determining outcome of severe polymicrobial sepsis. Elucidation of this role identifies a mechanism for the observed relationship between Ddah2 polymorphisms, cardiovascular disease, and outcome in sepsis.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pulmonary Circulation, Wiley, Vol. 3, No. 3 ( 2013-09), p. 675-691
    Abstract: Circulating levels of asymmetric dimethylarginine (ADMA), a nitric oxide synthase inhibitor, are increased in patients with idiopathic pulmonary hypertension (IPAH). We hypothesized that ADMA abrogates gap junctional communication, required for the coordinated regulation of endothelial barrier function and angiogenesis, and so contributes to pulmonary endothelial dysfunction. The effects of ADMA on expression and function of gap junctional proteins were studied in human pulmonary artery endothelial cells; pulmonary endothelial microvascular cells from mice deficient in an enzyme metabolizing ADMA, dimethylarginine dimethylaminohydrolase I (DDAHI); and blood‐derived endothelial‐like cells from patients with IPAH. Exogenous and endogenous ADMA inhibited protein expression and membrane localization of connexin 43 (Cx43) in a nitric oxide/soluble guanosine monophosphate/c‐jun‐dependent manner in pulmonary endothelial cells, resulting in the inhibition of gap junctional communication, increased permeability, and decreased angiogenesis. The effects of ADMA were prevented by overexpression of DDAHI or Cx43 and by treatment with rotigaptide. Blood‐derived endothelial‐like cells from IPAH patients displayed a distinct disease‐related phenotype compared to cells from healthy controls, characterized by reduced DDAHI expression, increased ADMA production, and abnormal angiogenesis. In summary, we show that ADMA induces pulmonary endothelial dysfunction via changes in expression and activity of Cx43. Cells from IPAH patients exhibit abnormal DDAHI/Cx43 signaling as well as differences in gap junctional communication, barrier function, and angiogenesis. Strategies that promote DDAHI/Cx43 signaling may have an endothelium‐protective effect and be beneficial in pulmonary vascular disease.
    Type of Medium: Online Resource
    ISSN: 2045-8940 , 2045-8940
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2638089-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 131, No. 25 ( 2015-06), p. 2217-2225
    Abstract: Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis and a risk factor for cardiovascular disease. Dimethylarginine dimethylaminohydrolase (DDAH) enzymes are responsible for ADMA breakdown. It has been reported that endothelial DDAH1 accounts for the majority of ADMA metabolism. However, we and others have shown strong DDAH1 expression in a range of nonendothelial cell types, suggesting that the endothelium is not the only site of metabolism. We have developed a new endothelium-specific DDAH1 knockout mouse (DDAH1 En−/− ) to investigate the significance of endothelial ADMA in cardiovascular homeostasis. Methods and Results— DDAH1 deletion in the DDAH1 En−/− mouse was mediated by Tie-2 driven Cre expression. DDAH1 deletion was confirmed through immunocytochemistry, whereas Western blotting showed that DDAH1 remained in the kidney and liver, confirming expression in nonendothelial cells. Plasma ADMA was unchanged in DDAH1 En−/− mice, and cultured aortas released amounts of ADMA to similar to controls. Consistent with these observations, vasoreactivity ex vivo and hemodynamics in vivo were unaltered in DDAH1 En−/− mice. In contrast, we observed significantly impaired angiogenic responses both ex vivo and in vivo. Conclusions— We demonstrate that endothelial DDAH1 is not a critical determinant of plasma ADMA, vascular reactivity, or hemodynamic homeostasis. DDAH1 is widely expressed in a range of vascular and nonvascular cell types; therefore, the additive effect of DDAH1 expression in multiple organ systems determines plasma ADMA concentrations. Endothelial deletion of DDAH1 profoundly impairs the angiogenic capacity of endothelial cells, indicating that intracellular ADMA is a critical determinant of endothelial cell response.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Reports Vol. 12, No. 1 ( 2022-03-29)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-03-29)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nitric Oxide, Elsevier BV, Vol. 42 ( 2014-11), p. 130-
    Type of Medium: Online Resource
    ISSN: 1089-8603
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1471433-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 9 ( 2020-09-20), p. 3026-
    Abstract: Atherosclerosis is a chronic cardiovascular disease which increases risk of major cardiovascular events including myocardial infarction and stroke. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) have long been recognised as a hallmark of cardiovascular disease and are associated with cardiovascular risk factors including hypertension, obesity and hypertriglyceridemia. In this review, we discuss the clinical literature that link ADMA concentrations to increased risk of the development of atherosclerosis. The formation of atherosclerotic lesions relies on the interplay between vascular dysfunction, leading to endothelial activation and the accumulation of inflammatory cells, particularly macrophages, within the vessel wall. Here, we review the mechanisms through which elevated ADMA contributes to endothelial dysfunction, activation and reactive oxygen species (ROS) production; how ADMA may affect vascular smooth muscle phenotype; and finally whether ADMA plays a regulatory role in the inflammatory processes occurring within the vessel wall.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 17-17
    Abstract: Introduction: The aim of this study was to determine whether deletion of the gene coding for the secreted glycoprotein, leucine-rich alpha-2-glycoprotein 1 (LRG1), or blockade of its action through function-blocking antibody treatment, improves tumor vascular function. Experimental Procedures: The role of LRG1 was investigated in subcutaneous B16/F0 and LL2 mouse tumor models and in genetically engineered mouse models of intestinal (ApcMin) and pancreatic (KPC) cancers. Tumors were evaluated in wild type (WT) or Lrg1-/- mice or in WT mice treated with 15C4, a LRG1 blocking antibody. Tumor growth and survival were monitored and post-mortem analysis of vascular density, structure and function were undertaken. The effect of blocking LRG1 function on the efficacy of cisplatin or adoptive T cell therapy in B16/F0 tumor-bearing mice was determined. Results: In Lrg1-/- mice or following functional blockade of LRG1 in WT animals there was a significant reduction in B16/F0 and LL2 tumor growth and improved survival in the ApcMin and KPC tumor-bearing mice. Vascular density was reduced in the B16/F0 and the KPC tumors but not in those of ApcMin. Most notably, we found that loss of LRG1 results in improved pericyte-endothelial cell association in the B16/F0 and ApcMin tumors. In the B16/F0 tumors we also observed an increase in the proportion of perfused vessels, and a reduction in vessel permeability and tumour hypoxia, consistent with our hypothesis that LRG1 is a vascular disrupting factor. Normalizing tumor vasculature to enhance vessel patency, reduce hypoxia and vascular leakage, and improve delivery of therapeutics has become a major objective. We therefore evaluated the effect of inhibiting LRG1 activity with the 15C4 antibody on the efficacy of cisplatin or adoptive CD8+ T cell therapy on B16/F0 tumor growth. Co-therapy revealed a highly significant reduction in tumor growth compared with monotherapy alone. Conclusions: These data show that LRG1 subverts physiological angiogenesis by promoting dysfunctional vessel growth, and that therapeutic targeting of LRG1 reduces tumor neovascular growth and normalizes vascular function. We propose, therefore, that LRG1 is a potential therapeutic target in cancer, and that its inhibition may aid the delivery and efficacy of tumour therapeutics. Funded by grants from the Medical Research Council UK, The Wellcome Trust, Rosetrees Trust, UCL Business and Moorfields Eye Hospital Special Trustees. Citation Format: John Greenwood, Marie N. O'Connor, David Kallenberg, Rene-Filip Jackstadt, Angharad Watson, Julia Ohme, Laura Dowsett, Jestin George, Xiaomeng Wang, Ann Ager, Owen J. Sansom, Stephen E. Moss. Inhibition of LRG1 normalizes tumor vessels and improves efficacy of cancer therapeutics [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 17.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Cancer Research Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1477-1477
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1477-1477
    Abstract: In cancer blood vessels are dysfunctional, poorly perfused and leaky. Malfunctioning vessels contribute to the pro-oncogenic environment and limit the efficacy of current systemically administered drugs. Normalizing the tumor vasculature to improve vessel permeability, reduce hypoxia and vascular leakage and enhance drug delivery, has become an experimental objective in cancer research. This study was carried out to investigate the effect of blocking the secreted glycoprotein leucine-rich alpha-2-glycoprotein 1 (LRG1) on tumor vascular function, and evaluate the impact it has on the efficacy of the common standard of care chemotherapeutic drug cisplatin. Under normal conditions LRG1 is mainly expressed in the liver but also in other tissues such as bone marrow and immune cells. LRG1 has been described in multiple reports to be a serum prognostic biomarker in several cancers, for example lung, prostate, colorectal and breast. LRG1 promotes dysfunctional vessel growth by disrupting TGFβ signaling. We demonstrate that in Lrg1-/- mice and following treatment with a LRG1 function-blocking antibody (15C4) tumor growth was inhibited. In addition, we show using RNAscope that following subcutaneous grafting of the B16F0 and LL2 tumor cell lines in mice, Lrg1 is induced in tumor endothelial cells. Despite having no effect on total vessel area, the density was decreased upon LRG1 blockade, with the persisting larger vessels exhibiting improved vessel structure as evidenced by increased pericyte and basement membrane endothelial cell coverage. Better mural cell association with tumor vascular endothelial cells and basement membrane coverage are also indicators of vessel stabilization and maturation. Using a systemically delivered fluorescent lectin tracer to mark perfused vessels, we observed a significant increase in tumor perfusion in mice treated with 15C4. Lastly, vessel normalization, through LRG1 antibody blockade, significantly enhanced the efficacy of cisplatin chemotherapy as shown by a slower tumor growth rate and increased tumor cell death compared to monotherapy. These data further corroborate the hypothesis that inhibition of LRG1 improves the delivery, and hence efficacy, of a cytotoxic drug. In conclusion, deletion or inhibition of LRG1 results in an improved vascular configuration and function, and the efficacy of chemotherapy. LRG1 blockade may therefore represent a novel strategy to enhance vessel health and improve the efficacy of cancer therapeutics. Citation Format: Camilla Pilotti, Marie N O'Connor, David Kallenberg, Laura Dowsett, Jestin George, Stephen E. Moss, John Greenwood. LRG1 blockade normalizes tumor vasculature and improves efficacy of chemotherapy [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1477.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...