GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CSIRO Publishing  (2)
Material
Publisher
  • CSIRO Publishing  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    CSIRO Publishing ; 2017
    In:  Australian Journal of Chemistry Vol. 70, No. 9 ( 2017), p. 1039-
    In: Australian Journal of Chemistry, CSIRO Publishing, Vol. 70, No. 9 ( 2017), p. 1039-
    Abstract: A novel mesoporous MoO2 composite supported on graphene oxide (m-MoO2/GO) has been designed and applied as an efficient epoxidation catalyst. The m-MoO2/GO composite was characterised by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmet–Teller surface area analysis, field emission scanning electron microscopy, and transmission electron microscopy. Compared with pure mesoporous MoO2 (m-MoO2) and amorphous MoO2-graphene oxide (a-MoO2/GO), m-MoO2/GO exhibits the best catalytic activity. The conversion and selectivity for cyclooctene are both over 99 % in 6 h. Remarkably, the mesoporous structure in m-MoO2/GO which derives from SiO2 nanospheres endows the catalyst better catalytic performance for long chain olefins: the conversion of methyl oleate can be as high as 82 %. Such a robust catalyst can be easily recycled and reused five times without significant loss of catalytic activity. This novel catalyst is promising in the synthesis of epoxides with a long carbon chain or large ring size.
    Type of Medium: Online Resource
    ISSN: 0004-9425
    RVK:
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Australian Journal of Chemistry, CSIRO Publishing, Vol. 69, No. 8 ( 2016), p. 817-
    Abstract: An organic–inorganic catalyst was prepared by the reaction of p-salicylidine aminobenzoic acid with mesoporous silica modified with 3-chloropropyl groups. The hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 3-chloropropyltrimethoxysilane (CPTES) took place during the preparation process. MoO2(acac)2 was then introduced into the mesoporous silica functionalized with a Schiff base ligand. The structural properties of the prepared catalysts were investigated by a series of techniques, such as elemental analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption curves, and thermogravimetric analysis (TGA). The results demonstrated that the MoVI Schiff base complex was successfully tethered on the silica support, and the hexagonally ordered mesoporous structure of the SBA-15-type silica was well retained after the anchoring reaction. The heterogeneous catalyst showed good catalytic activities in the liquid-phase epoxidation of olefins with t-BuOOH as the oxygen source in 1,2-dichloroethane solvent at 80°C. Several important factors, including oxidant-to-substrate ratio, solvent, and catalyst reusability, were investigated. Under the optimum reaction conditions, using this heterogeneous catalyst for the cyclohexene epoxidation reaction, a high conversion of 97.20 % and selectivity of 〉 99 % was achieved after 4 h, while the catalytic activity nearly remained unchanged over four runs.
    Type of Medium: Online Resource
    ISSN: 0004-9425
    RVK:
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...