GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dong, Buwen  (2)
  • 2015-2019  (2)
Material
Language
Years
  • 2015-2019  (2)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Geophysical Research Letters Vol. 46, No. 3 ( 2019-02-16), p. 1765-1775
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 46, No. 3 ( 2019-02-16), p. 1765-1775
    Abstract: Changes in atmospheric circulation dominate the AMV effect on monsoons, while thermodynamic changes are moderate The tropical North Atlantic largely forces AMV effects, by strengthening interhemispheric thermal gradients and the Walker circulation The effects of AMV are not linearly related to the magnitude of warming
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Climate Vol. 30, No. 16 ( 2017-08), p. 6203-6223
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 16 ( 2017-08), p. 6203-6223
    Abstract: There is still no consensus about the best methodology for attributing observed changes in climate or climate events. One widely used approach relies on experiments in which the time periods of interest are simulated using an atmospheric general circulation model (AGCM) forced by prescribed sea surface temperatures (SSTs), with and without estimated anthropogenic influences. A potential limitation of such experiments is the lack of explicit atmosphere–ocean coupling; therefore a key question is whether the attribution statements derived from such studies are in fact robust. In this research the authors have carried out climate model experiments to test attribution conclusions in a situation where the answer is known—a so-called perfect model approach. The study involves comparing attribution conclusions for decadal changes derived from experiments with a coupled climate model (specifically an AGCM coupled to an ocean mixed-layer model) with conclusions derived from parallel experiments with the same AGCM forced by SSTs derived from the coupled model simulations. Results indicate that attribution conclusions for surface air temperature changes derived from AGCM experiments are generally robust and not sensitive to air–sea coupling. However, changes in seasonal mean and extreme precipitations, and circulation in some regions, show large sensitivity to air–sea coupling, notably in the summer monsoons over East Asia and Australia. Comparison with observed changes indicates that the coupled simulations generally agree better with observations. These results demonstrate that the AGCM-based attribution method has limitations and may lead to erroneous attribution conclusions in some regions for local circulation and mean and extreme precipitation. The coupled mixed-layer model used in this study offers an alternative and, in some respects, superior tool for attribution studies.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...