GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dillenardt, Lisa  (4)
  • Thieken, Annegret H.  (4)
  • 1
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 11 ( 2022-11-17), p. 3701-3724
    Abstract: Abstract. Extreme precipitation is a weather phenomenon with tremendous damaging potential for property and human life. As the intensity and frequency of such events is projected to increase in a warming climate, there is an urgent need to advance the existing knowledge on extreme precipitation processes, statistics and impacts across scales. To this end, a working group within the Germany-based project, ClimXtreme, has been established to carry out multidisciplinary analyses of high-impact events. In this work, we provide a comprehensive assessment of the 29 June 2017 heavy precipitation event (HPE) affecting the Berlin metropolitan region (Germany), from the meteorological, impacts and climate perspectives, including climate change attribution. Our analysis showed that this event occurred under the influence of a mid-tropospheric trough over western Europe and two shortwave surface lows over Britain and Poland (Rasmund and Rasmund II), inducing relevant low-level wind convergence along the German–Polish border. Over 11 000 convective cells were triggered, starting early morning 29 June, displacing northwards slowly under the influence of a weak tropospheric flow (10 m s−1 at 500 hPa). The quasi-stationary situation led to totals up to 196 mm d−1, making this event the 29 June most severe in the 1951–2021 climatology, ranked by means of a precipitation-based index. Regarding impacts, it incurred the largest insured losses in the period 2002 to 2017 (EUR 60 million) in the greater Berlin area. We provide further insights on flood attributes (inundation, depth, duration) based on a unique household-level survey data set. The major moisture source for this event was the Alpine–Slovenian region (63 % of identified sources) due to recycling of precipitation falling over that region 1 d earlier. Implementing three different generalised extreme value (GEV) models, we quantified the return periods for this case to be above 100 years for daily aggregated precipitation, and up to 100 and 10 years for 8 and 1 h aggregations, respectively. The conditional attribution demonstrated that warming since the pre-industrial era caused a small but significant increase of 4 % in total precipitation and 10 % for extreme intensities. The possibility that not just greenhouse-gas-induced warming, but also anthropogenic aerosols affected the intensity of precipitation is investigated through aerosol sensitivity experiments. Our multi-disciplinary approach allowed us to relate interconnected aspects of extreme precipitation. For instance, the link between the unique meteorological conditions of this case and its very large return periods, or the extent to which it is attributable to already-observed anthropogenic climate change.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  Natural Hazards and Earth System Sciences Vol. 23, No. 2 ( 2023-03-03), p. 973-990
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 23, No. 2 ( 2023-03-03), p. 973-990
    Abstract: Abstract. In July 2021 intense rainfall caused devastating floods in western Europe and 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling into question their flood forecasting, warning and response system (FFWRS). Data from an online survey (n=1315) reveal that 35 % of the respondents from NW and 29 % from RP did not receive any warning. Of those who were warned, 85 % did not expect very severe flooding and 46 % reported a lack of situational knowledge on protective behaviour. Regression analysis reveals that this knowledge is influenced not only by gender and flood experience but also by the content and the source of the warning message. The results are complemented by analyses of media reports and official warnings that show shortcomings in providing adequate recommendations to people at risk. Still, the share of people who did not report any emergency response is low and comparable to other flood events. However, the perceived effectiveness of the protective behaviour was low and mainly compromised by high water levels and the perceived level of surprise about the flood magnitude. Good situational knowledge and a higher number of previously experienced floods were linked to performing more effective loss-reducing action. Dissemination of warnings, clearer communication of the expected flood magnitude and recommendations on adequate responses to a severe flood, particularly with regard to flash and pluvial floods, are seen as major entry points for improving the FFWRS in Germany.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Journal of Flood Risk Management Vol. 15, No. 3 ( 2022-09)
    In: Journal of Flood Risk Management, Wiley, Vol. 15, No. 3 ( 2022-09)
    Abstract: In recent years, German cities were heavily impacted by pluvial flooding and related damage is projected to increase due to climate change and urbanisation. It is important to ask how to improve urban pluvial flood risk management. To understand the current state of property level adaptation, a survey was conducted in four municipalities that had recently been impacted by pluvial flooding. A hybrid framework based on the Protection Motivation Theory (PMT) and the Protection Action Decision Model (PADM) was used to investigate drivers of adaptive behaviour through both descriptive and regression analyses. Descriptive statistics revealed that participants tended to instal more low‐ and medium‐cost measures than high‐cost measures. Regression analyses showed that coping appraisal increased protection motivation, but that the adaptive behaviour also depends on framing factors, particularly homeownership. We further found that, while threat appraisal solely affects protection motivation and responsibility appraisal affects solely maladaptive thinking, coping appraisal affects both. Our results indicate that PMT is a solid starting point to study adaptive behaviours in the context of pluvial flooding, but we need to go beyond that by, for instance, considering factors of the PADM, such as responsibility, ownership, or respondent age, to fully understand this complex decision‐making process.
    Type of Medium: Online Resource
    ISSN: 1753-318X , 1753-318X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2430376-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Climatic Change Vol. 155, No. 1 ( 2019-7), p. 19-36
    In: Climatic Change, Springer Science and Business Media LLC, Vol. 155, No. 1 ( 2019-7), p. 19-36
    Type of Medium: Online Resource
    ISSN: 0165-0009 , 1573-1480
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 751086-X
    detail.hit.zdb_id: 1477652-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...