GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 20 ( 2020-10-15), p. 7616-
    Abstract: Changes in the stomatal aperture in response to CO2 levels allow plants to manage water usage, optimize CO2 uptake and adjust to environmental stimuli. The current study reports that sub-ambient CO2 up-regulated the low temperature induction of the C-repeat Binding Factor (CBF)-dependent cold signaling pathway in Arabidopsis (Arabidopsis thaliana) and the opposite occurred in response to supra-ambient CO2. Accordingly, cold induction of various downstream cold-responsive genes was modified by CO2 treatments and expression changes were either partially or fully CBF-dependent. Changes in electrolyte leakage during freezing tests were correlated with CO2′s effects on CBF expression. Cold treatments were also performed on Arabidopsis mutants with altered stomatal responses to CO2, i.e., high leaf temperature 1-2 (ht1-2, CO2 hypersensitive) and β-carbonic anhydrase 1 and 4 (ca1ca4, CO2 insensitive). The cold-induced expression of CBF and downstream CBF target genes plus freezing tolerance of ht1-2 was consistently less than that for Col-0, suggesting that HT1 is a positive modulator of cold signaling. The ca1ca4 mutant had diminished CBF expression during cold treatment but the downstream expression of cold-responsive genes was either similar to or greater than that of Col-0. This finding suggested that βCA1/4 modulates the expression of certain cold-responsive genes in a CBF-independent manner. Stomatal conductance measurements demonstrated that low temperatures overrode low CO2-induced stomatal opening and this process was delayed in the cold tolerant mutant, ca1ca4, compared to the cold sensitive mutant, ht1-2. The similar stomatal responses were evident from freezing tolerant line, Ox-CBF, overexpression of CBF3, compared to wild-type ecotype Ws-2. Together, these results indicate that CO2 signaling in stomata and CBF-mediated cold signaling work coordinately in Arabidopsis to manage abiotic stress.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Environmental and Experimental Botany Vol. 155 ( 2018-11), p. 509-517
    In: Environmental and Experimental Botany, Elsevier BV, Vol. 155 ( 2018-11), p. 509-517
    Type of Medium: Online Resource
    ISSN: 0098-8472
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1497561-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Plants Vol. 11, No. 20 ( 2022-10-19), p. 2771-
    In: Plants, MDPI AG, Vol. 11, No. 20 ( 2022-10-19), p. 2771-
    Abstract: Water stress in plants depends on the soil water level and the evaporative demand. In this study, the physiological, biochemical, and molecular response of maize were examined under three evaporative demand conditions (low—1.00 kPa, medium—2.2 kPa, and high—4.00 kPa Vapor pressure deficit (VPD)) at three different soil water content (SWC); well-watered, 45%, and 35% SWC. Plants grown at 35% SWC under high VPD had significant (p 〈 0.01) lower leaf weight, leaf area, and leaf number than low VPD. Plants under low, medium, and high VPD with drought stress (45% and 35% SWC) showed a 30 to 60% reduction in their leaf area compared to well-watered plants. Gas exchange parameters including photosynthesis, stomatal conductance, and water use efficiency exhibited significant differences (p 〈 0.01) between treatments, with the highest reduction occuring at 35% SWC and high VPD. Both drought and VPD significantly (p 〈 0.01) increased C4 enzyme levels and some transcription factors with increased stress levels. Transcription factors primarily related to Abssisic Acid (ABA) synthesis were upregulated under drought, which might be related to high ABA levels. In summary, severe drought levels coupled with high VPD had shown a significant decrease in plant development by modifying enzymes, ABA, and transcription factors.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2018
    In:  Frontiers in Plant Science Vol. 9 ( 2018-10-30)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 9 ( 2018-10-30)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plants, MDPI AG, Vol. 10, No. 2 ( 2021-02-07), p. 321-
    Abstract: The composition and content of sugar play a pivotal role in goji berry (Lycium barbarum L.) fruits, determining fruit quality. Long-term exposure of goji berry to elevated CO2 (eCO2) was frequently demonstrated to reduce sugar content and secondary metabolites. In order to understand the regulatory mechanisms and improve the quality of fruit in the changing climate, it is essential to characterize sugar metabolism genes that respond to eCO2. The objectives of this study were to clone full-length cDNA of three sugar metabolism genes—LBGAE (Lycium barbarum UDP-glucuronate 4-epimerase), LBGALA (Lycium barbarum alpha-galactosidase), and LBMS (Lycium barbarum malate synthase)—that were previously identified responding to eCO2, and to analyze sequence characteristics and expression regulation patterns. Sugar metabolism enzymes regulated by these genes were also estimated along with various carbohydrates from goji berry fruits grown under ambient (400 μmol mol−1) and elevated (700 μmol mol−1) CO2 for 90 and 120 days. Homology-based sequence analysis revealed that the protein-contained functional domains are similar to sugar transport regulation and had a high sequence homology with other Solanaceae species. The sucrose metabolism-related enzyme’s activity varied significantly from ambient to eCO2 in 90-day and 120-day samples along with sugars. This study provides fundamental information on sugar metabolism genes to eCO2 in goji berry to enhance fruit quality to climate change.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-08-13)
    Abstract: The present study investigated the interactive effects of three environmental stress factors elevated CO 2 , temperature, and drought stress on soybean growth and yield. Experiments were conducted in the sunlit, controlled environment Soil–Plant–Atmosphere–Research chambers under two-level of irrigation (WW-well water and WS-water stress-35%WW) and CO 2 (aCO 2- ambient 400 µmol mol −1 and eCO 2 -elevated 800 µmol mol −1 ) and each at the three day/night temperature regimes of 24/18 °C (MLT-moderately low), 28/22 °C (OT-optimum), and 32/26 °C (MHT-moderately high). Results showed the greatest negative impact of WS on plant traits such as canopy photosynthesis ( P Cnet ), total dry weight (TDwt), and seed yield. The decreases in these traits under WS ranged between 40 and 70% averaged across temperature regimes with a greater detrimental impact in plants grown under aCO 2 than eCO 2 . The MHT had an increased P Cnet , TDwt, and seed yield primarily under eCO 2, with a greater increase under WW than WS conditions. The eCO 2 stimulated P Cnet , TDwt, and seed yield more under WS than WW. For instance, on average across T regimes, eCO 2 stimulated around 25% and 90% dry mass under WW and WS, respectively, relative to aCO 2 . Overall, eCO 2 appears to benefit soybean productivity, at least partially, under WS and the moderately warmer temperature of this study.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Plant Physiology and Biochemistry Vol. 154 ( 2020-09), p. 714-722
    In: Plant Physiology and Biochemistry, Elsevier BV, Vol. 154 ( 2020-09), p. 714-722
    Type of Medium: Online Resource
    ISSN: 0981-9428
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2031431-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Tree Physiology, Oxford University Press (OUP), ( 2019-03-16)
    Type of Medium: Online Resource
    ISSN: 1758-4469
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1473475-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Agronomy Vol. 10, No. 9 ( 2020-08-31), p. 1290-
    In: Agronomy, MDPI AG, Vol. 10, No. 9 ( 2020-08-31), p. 1290-
    Abstract: Drought is a major abiotic stress factor limiting cotton yield. It is important to identify the genotypes that can conserve water under drought stress conditions and improve yield. The objective of the current study was to evaluate cotton genotypes for water conservation traits, i.e., high FTSW (Fraction of Transpirable Soil Water) threshold for transpiration. Plants utilize water slowly by declining transpiration at high FTSW and conserving soil water, which can be used by the plant later in the growing season to improve yield. Fifteen cotton varieties were selected based on their differences in transpiration response to elevated vapor pressure deficit (VPD) to study drought responses. Two pot experiments were carried out in the greenhouse to determine the FTSW threshold for the transpiration rate as the soil dried. A significant variation (p 〈 0.01) in the FTSW threshold values for transpiration decline was observed, ranging from 0.35 to 0.60 among cotton cultivars. Genotypes with high FTSW thresholds also displayed low transpiration under well-watered conditions. Further studies with four selected genotype contrasts in FTSW threshold values for transpiration showed differences (p 〈 0.05 to 0.001) in gas exchange parameters and water potentials. This study demonstrated that there are alternate traits among the cotton genotypes for enhancing soil water conservation to improve yield under water-limited conditions.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...