GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 14 ( 2020), p. 140301-
    Kurzfassung: Realization of spinor Bose-Einstein condensate in an optical trap has made it possible to create a variety of topological nontrivial structures, due to the vector character of the order parameter. Recently, artificial spin-orbit coupling in the spinor Bose-Einstein condensate, owing to coupling between the spin and the center-of-mass motion of the atom, provides an unprecedented opportunity to search for novel quantum states. As is well known, the potential well in the Bose-Einstein condensate is adjustable. The toroidal trap is an important model potential because of its simplicity and richness in physics. In particular, the spinor Bose-Einstein condensate under the toroidal trap has brought an ideal platform for studying fascinating properties of a superfluid, such as persistent flow and symmetry-breaking localization. For the case of the spin-orbit-coupled Bose-Einstein condensate, the previous studies of the toroidal trap mainly focused on the two-component or antiferromagnetic case. However, in the presence of a toroidal trap, there remains an open question whether the combined effects of the spin-orbit coupling and rotation can produce previously unknown types of topological excitations in the ferromagnetic Bose-Einstein condensate. In this work, by using quasi two-dimensional Gross-Pitaevskii equations, we study the ground state structure of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in the toroidal trap. We concentrate on the effects of the spin-orbit coupling and the rotation on the ground states. The numerical results show that in the presence of a toroidal trap, the ground state structure is displayed as half-skyrmion chain with circular distribution. Adjusting the strength of spin-orbit coupling not only changes the number of half-skyrmion in the system, but also controls the symmetry of half-skyrmion with circular distribution. As the rotation frequency increases, the system undergoes the transitions from the plane wave to the half-skyrmion chain with circular distribution, and eventually developing the half-skyrmion phase of triangular lattice. Next, we examine the effect of spin-independent interaction on spin-orbit coupled rotating spinor Bose-Einstein condensate. As the spin-independent interaction increases, the topological defects in the condensate increase due to the variation of the local magnetic order. We also discuss the influence of well shape on the ground state structure. These topological structures can be detected via the time-of-flight absorption imaging technique. The spin-orbit coupled spinor Bose-Einstein condensate in the toroidal trap is an important quantum platform, which not only opens up a new avenue for exploring the exotic topological structures, but also is crucial for realizing the transitions among different ground states. This work paves the way for futureexploring the topological defects and the corresponding dynamical stability in quantum system subjected to the toroidal trap.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2020
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2023
    In:  Acta Physica Sinica Vol. 72, No. 6 ( 2023), p. 060301-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 6 ( 2023), p. 060301-
    Kurzfassung: Entanglement between a photon and an atomic memory is an important tool for quantum repeater research. By using the Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble, quantum entanglement between a photon and an atomic spin-wave memory is produced. With the further development of quantum information, it is necessary to put forward higher requirements for the diversity and controllability of quantum memory. In this work, we experimentally demonstrate an optical memory in cold atomic ensemble with enhanced fiber-cavity and high-fidelity optical memory for the first time. We design a fiber cavity to enhance the coupling strength between light and atomic ensemble and then improve the optical retrieval efficiency. Unfortunately, the use of fiber cavity may lead to the decrease of fidelity. Therefore, it is vital to realize high fidelity in the enhanced fiber-cavity optical memory. The cavity has a round-trip length of 1.5 m and a free spectral range of 190 MHz. The finesse (〈i〉F〈/i〉) of the cavity with the cold atoms in the DLCZ condition is measured to be 〈inline-formula〉〈tex-math id="Z-20230319104926-1"〉\begin{document}$ \sim $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-1.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-1.png"/〉〈/alternatives〉〈/inline-formula〉18. In cavity-enhanced DLCZ scheme, we use a fiber cavity instead of a stationary cavity. If a stationary cavity is used, the signal light will be reflected by the end mirror of the cavity and then pass back through the atoms. The storage of the backward signal light will generate a short-wavelength spin wave and then lead to a rapid decoherence of the memory. When cavity is locked by using the PDH frequency locking technique, we observe that the production probability of the Stokes photons is increased by 4.6 times higher than that without cavity and retrieval efficiency of atomic spin wave is increased by 1.6 times that without cavity due to the optical cavity enhancement effect. The presented cavity-enhanced storage shows that the retrieval efficiency is 〈inline-formula〉〈tex-math id="Z-20230319104926-3"〉\begin{document}$ \sim $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-3.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-3.png"/〉〈/alternatives〉〈/inline-formula〉22%, corresponding to an intrinsic retrieval efficiency of 〈inline-formula〉〈tex-math id="Z-20230319104926-2"〉\begin{document}$ \sim $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-2.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-2.png"/〉〈/alternatives〉〈/inline-formula〉40%, at the same time the fidelity of the quantum state is 〈inline-formula〉〈tex-math id="Z-20230319104926-4"〉\begin{document}$ \sim $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-4.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-4.png"/〉〈/alternatives〉〈/inline-formula〉92%. The accomplishment of this project will provide another effective way of realizing long-distance quantum communication and large-scale quantum network construction.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2023
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2020
    In:  Acta Physica Sinica Vol. 69, No. 1 ( 2020), p. 014206-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 1 ( 2020), p. 014206-
    Kurzfassung: Selective reflection (SR) from the interface between transparent medium and dilute vapour is caused by the atomic vapor near the interface. The sub-Doppler structure in SR is due to the deexcitation caused by the collision between atomic vapor and the wall. Beacuse the interaction region between atomic vapor and incident light is on the order of a few hundred nanometers, SR has low optical loss and high spatial resolution. The experimental device of SR is simple. Because of the above characteristics, the SR has been widely studied and applied. The nonlinear SR spectrum of quasi lambda-type four-level system at gas-solid interface is studied theoretically in this paper. By sloving the density matrix equations, the approximate analytic solution of the matrix element associated with the probe field is obtained at normal incidence when the intensity of the probe field is very weak. The effect of the Rabi frequency, the detuning of the signal field and the detuning of the coupling field on the lineshape are analyzed by numerical simulation, respectively. Three peaks and two transparent windows appear in SR spectrum when the detuning of coupling field and signal field are both zero. The middle peak is generated due to the participation of signal field, and the other two peaks are caused by the other two fields. The linewidth and the amplitude of the middle peak can be changed by varying the Rabi frequency of signal field, and the other two peaks have little effect on the Rabi frequency of signal field. The signal generated due to the participation of signal field can be transformed from peak to transparent window when the detuning value of the signal field is equal to the Rabi frequency of coupling field. When the detuning value of the signal field is not equal to the Rabi frequency of coupling field, a dispersion-like signal between reflection peak and transparent window is generated due to the participation of signal field. The position of peak and transparent window can be manipulated by controlling the detuning value of the coupling field. When the detuning value of coupling field decreases from zero, three peaks all shift to red detuning direction. When the detuning value of coupling field is blue-detuned and increases, three peaks all shift to blue detuning direction. The numerical results can be explained by using the various electric transition pathways and dressed state theory. This study is helpful in investigating quantum coherence and dynamic process of atoms at gas-solid interface.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2020
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2019
    In:  Acta Physica Sinica Vol. 68, No. 20 ( 2019), p. 203701-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 20 ( 2019), p. 203701-
    Kurzfassung: The interferometry of two Kapitza-Dirac (KD) pulses acting on cold atoms in a harmonic oscillator potential well is investigated by Feynman path integral method. The wave function and density distribution function of the system at a given time are calculated analytically by using the propagator under the action of an external field. The first KD pulse acts on cold atoms to produce a large number of modes in the harmonic oscillator potential well. The maximum value of wave packet of mode 0 is larger than those of other modes. These modes evolve along different paths. The external field changes the phase of each mode and makes the evolution path of the mode deviate from that without the external field. When the second KD pulse is added, it splits the mode of the first KD pulse, and thus generates more modes. These modes will evolve along different paths under the action of external field and harmonic potential well, and interfere with each other. At the moment of measurement, all the wave packets are separated without overlapping. The effect of the external field does not change the magnitude of the density distribution at the time of measurement, but makes the wave packet of each mode shift. The phase difference between adjacent modes decreases linearly with the increase of field intensity. When the external field is a gravity field, we calculate the Fisher information and the Cramer-Rao lowér bound. The Fisher information is proportional to the mass of atoms and inversely to the third power of harmonic potential well frequency. We can improve the measurement accuracy of interferometer by reducing the frequency of harmonic potential well and increasing atomic mass. When the initial state is the ground state of the harmonic potential well, the accuracy of the gravity acceleration measured by the interference device can be obtained to be 10〈sup〉–9〈/sup〉 by using the experimental parameters. The initial state is the ground state of the harmonic potential well and the external field, and the calculation result indicates that the measurement accuracy will decrease. At the same time, the enhancement of inter-atomic repulsion and attraction interaction will also lead the measurement accuracy to increase.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2019
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 6 ( 2019), p. 064205-
    Kurzfassung: Entanglement source with high entanglement degree is the guarantee for accomplishing the quantum information transmission and process with higher fidelity. Continuous variable Einstein-Podolsky-Rosen (EPR) entangled optical field with quantum correlation of amplitude and phase quadrature is a basic and important quantum resource in the quantum information science area, which can be obtained by a non-degenerate optical parametric amplifier (NOPA) operated below the threshold pump power. Because of the limitation of the imperfect performance of optical components in optical cavity, we should find efficient methods of implementing quantum manipulation to improve the entanglement degree of the entangled state of light. Connecting NOPA1 and NOPA2 in series, the entangled state of light output from the NOPA1 can be manipulated by NOPA2, and the entanglement degree can be enhanced under certain conditions. To improve the entanglement degree to a greater extent, the structure of the NOPA1 is chosen as a half-monolithic standing-wave optical resonator with the triple resonance of the pump and two subharmonic modes. The NOPA1 is able to output the entangled optical fields with an entanglement degree of 8.4 dB, which is the highest entanglement generated by a single device so far. The structure of the NOPA2 can be chosen as a standing-wave optical cavity or a four-mirror ring optical cavity. According to the different structures of the NOPA2, we theoretically design two kinds of optical systems with two cascaded cavities and compare the effects of the two optical systems on the continuous variable EPR entanglement cascaded enhancement in detail. Based on the above contrastive analysis, when the entanglement degree of the input optical fields is 8.4 dB and the transmissivity of the output coupler is lower, the structure of a four-mirror ring optical cavity for NOPA2 cannot enhance the entanglement degree, so the optical system including NOPA2 with standing wave cavity structure and the optical isolator with high transmission efficiency is appropriate. When the transmissivity of the output coupler and transmission efficiency of the optical isolator are higher, the structure of the NOPA2 should be chosen as a standing-wave optical cavity, otherwise the structure of the NOPA2 should be chosen as a four-mirror ring optical cavity. We also theoretically analyze the dependence of the correlation degree of output optical fields on physical parameters. The results show that under the conditions of higher input and output coupling efficiency, higher transmission efficiency and lower intro-cavity loss, the entangled state of light with higher entanglement degree can be obtained experimentally. This provides the reference for obtaining entangled optical fields with higher entanglement degree in the future.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2019
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...