GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Deng, Yujia  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    In: Polymers, MDPI AG, Vol. 11, No. 12 ( 2019-11-30), p. 1973-
    Abstract: The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO3) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 9, No. 3 ( 2019-03-05), p. 375-
    Abstract: This article presents a facile, one-pot method using the aqueous phase for the synthesis of high-quality Pd nanocubes. In this study, Pd chloride was used as the precursor, sodium iodide as capping agent, and poly(vinylpyrrolidone) as surfactant and reducing agent. The effects of different halogens on the morphology of Pd nanocrystals were investigated. The results showed that, in this synthesis system, the selection and proper amount of sodium iodide was essential to the preparation of high-quality Pd nanocubes. When iodide was replaced by other halogens (such as bromide and chloride), Pd nanocrystals with cubic morphology could not be obtained. In addition, we have found that NaBH4 can be used to efficiently remove inorganic covers, such as iodide, from the surface of Pd nanoparticles as synthesized. The Pd nanoparticles obtained were employed as electro-catalysts for formic acid oxidation, and they exhibited excellent catalytic activity and good stability towards this reaction.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...