GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deng, Ya-Ping  (1)
  • Hu, Yongfeng  (1)
Material
Person/Organisation
Language
Years
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-11-17)
    Abstract: The implementation of pristine metal-organic frameworks as air electrode may spark fresh vitality to rechargeable zinc-air batteries, but successful employment is rare due to the challenges in regulating their electronic states and structural porosity. Here we conquer these issues by incorporating ligand vacancies and hierarchical pores into cobalt-zinc heterometal imidazole frameworks. Systematic characterization and theoretical modeling disclose that the ligand editing eases surmountable energy barrier for *OH deprotonation by its efficacy to steer metal d -orbital electron occupancy. As a stride forward, the selected cobalt-zinc heterometallic alliance lifts the energy level of unsaturated d -orbitals and optimizes their adsorption/desorption process with oxygenated intermediates. With these merits, cobalt-zinc heterometal imidazole frameworks, as a conceptually unique electrode, empowers zinc-air battery with a discharge-charge voltage gap of 0.8 V and a cyclability of 1250 h at 15 mA cm –2 , outperforming the noble-metal benchmarks.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...