GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 8 ( 2020-08-01), p. E1357-E1377
    Abstract: Water management and flood control are major challenges in the western United States. They are heavily influenced by atmospheric river (AR) storms that produce both beneficial water supply and hazards; for example, 84% of all flood damages in the West (up to 99% in key areas) are associated with ARs. However, AR landfall forecast position errors can exceed 200 km at even 1-day lead time and yet many watersheds are 〈 100 km across, which contributes to issues such as the 2017 Oroville Dam spillway incident and regularly to large flood forecast errors. Combined with the rise of wildfires and deadly post-wildfire debris flows, such as Montecito (2018), the need for better AR forecasts is urgent. Atmospheric River Reconnaissance (AR Recon) was developed as a research and operations partnership to address these needs. It combines new observations, modeling, data assimilation, and forecast verification methods to improve the science and predictions of landfalling ARs. ARs over the northeast Pacific are measured using dropsondes from up to three aircraft simultaneously. Additionally, airborne radio occultation is being tested, and drifting buoys with pressure sensors are deployed. AR targeting and data collection methods have been developed, assimilation and forecast impact experiments are ongoing, and better understanding of AR dynamics is emerging. AR Recon is led by the Center for Western Weather and Water Extremes and NWS/NCEP. The effort’s core partners include the U.S. Navy, U.S. Air Force, NCAR, ECMWF, and multiple academic institutions. AR Recon is included in the “National Winter Season Operations Plan” to support improved outcomes for emergency preparedness and water management in the West.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Weather and Forecasting, American Meteorological Society, ( 2023-10-09)
    Abstract: Atmospheric River Reconnaissance has held field campaigns during cool seasons since 2016. These campaigns have provided thousands of dropsonde data profiles, which are assimilated into multiple global operational numerical weather prediction models. Data denial experiments, conducted by running a parallel set of forecasts that exclude the dropsonde information, allow testing of the impact of the dropsonde data on model analyses and the subsequent forecasts. Here, we investigate the differences in skill between the control forecasts (with dropsonde data assimilated) and denial forecasts (without dropsonde data assimilated) in terms of both precipitation and integrated vapor transport (IVT) at multiple thresholds. The differences are considered in the times and locations where there is a reasonable expectation of influence of an Intensive Observation Period (IOP). Results for 2019 and 2020 from both the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Centers for Environmental Prediction (NCEP) global model show improvements with the added information from the dropsondes. In particular, significant improvements in the control forecast IVT generally occur in both models, especially at higher values. Significant improvements in the control forecast precipitation also generally occur in both models, but the improvements vary depending on the lead time and metrics used.
    Type of Medium: Online Resource
    ISSN: 0882-8156 , 1520-0434
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2025194-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...