GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DeAngelis, Anthony M.  (3)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Hydrometeorology Vol. 23, No. 11 ( 2022-11), p. 1719-1736
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 23, No. 11 ( 2022-11), p. 1719-1736
    Abstract: Past work has shown that a land surface model’s (LSM) implicit (not explicitly coded) relationships between soil moisture and both evapotranspiration (ET) and runoff largely determine the LSM’s hydrological behavior. Here we estimate the relationships that appear to be operating in the real world and compare them to those of the LSM component of a state-of-the-art Earth system model (ESM). The two sets of relationships are determined by calibrating them within a simple water balance model (WBM): once using stream gauge observations from small, unregulated rivers over the eastern half of the United States, and once using the runoffs generated by the LSM as part of a state-of-the-art atmospheric reanalysis. Hydrological simulations and subseasonal hydrological forecasts performed with the two calibrated versions of the WBM provide two key results. First, the version calibrated to the LSM-generated runoffs does successfully reproduce, to first order, the hydrological behavior of the full LSM within its ESM environment. Second, of the two WBM versions, the one calibrated to the observations reproduces more accurately a broad collection of fully independent streamflow observations as well as a similarly broad collection of in situ soil moisture measurements. Taken together, the two results suggest that the observations-calibrated ET and runoff efficiency functions do successfully represent, at least to some degree, soil moisture controls over hydrological variability in nature and can serve as potentially useful targets for further LSM development. Significance Statement For all their complexity, and for all the work that underlies their development, the land surface model components of Earth system models may be suboptimal in fundamental yet unstudied ways. Here we estimate how the joint control of soil moisture over evapotranspiration and runoff processes in nature differs from that built implicitly into a state-of-the-art land model. Validation exercises demonstrate how this difference appears to lead to reduced accuracy in the land model’s simulation and forecasting of such hydrological variables as streamflow and soil moisture. Our results indicate that the relationships estimated for nature could serve as a potentially valuable target for further land model development.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 21, No. 8 ( 2020-08-01), p. 1705-1722
    Abstract: Past studies have shown that accurate soil moisture initialization can contribute significant skill to near-surface air temperature (T2M) forecasts at subseasonal leads. The mechanisms by which soil moisture contributes such skill are examined here with a simple water balance–based model that captures the essence of soil moisture behavior in a state-of-the-art subseasonal-to-seasonal (S2S) forecasting system. The simple model successfully transforms initial soil moisture contents into average “forecast” evapotranspiration (ET) values at 16–30-day lead that agree well, during summer, with the values forecast by the full NASA GEOS S2S system, indicating that soil moisture initialization dominates over forecast meteorological conditions in determining ET fluxes at subseasonal leads. When the simple model’s ET anomalies are interpreted in terms of T2M anomalies, a similar conclusion is reached for T2M: soil moisture initialization explains much (about 50% in the eastern half of the continental United States) of the T2M anomaly values produced by the full GEOS S2S system at 16–30-day lead, and the T2M forecasts produced by the simple model capture about one-half of the skill attained by the full system. The simple model’s framework is particularly conducive to an analysis of uncertainty in forecasts. Drier soils are generally found to induce larger uncertainty in ET (and thus T2M) forecasts, a result linked to the functional form relating ET to soil moisture in the simple model and verified by an analysis of the ensemble spreads within the forecasts produced by the full GEOS S2S system.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Hydrometeorology Vol. 22, No. 10 ( 2021-10), p. 2505-2519
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 22, No. 10 ( 2021-10), p. 2505-2519
    Abstract: Soil moisture ( W ) helps control evapotranspiration (ET), and ET variations can in turn have a distinct impact on 2-m air temperature (T2M), given that increases in evaporative cooling encourage reduced temperatures. Soil moisture is accordingly linked to T2M, and realistic soil moisture initialization has, in previous studies, been shown to improve the skill of subseasonal T2M forecasts. The relationship between soil moisture and evapotranspiration, however, is distinctly nonlinear, with ET tending to increase with soil moisture in drier conditions and to be insensitive to soil moisture variations in wetter conditions. Here, through an extensive analysis of subseasonal forecasts produced with a state-of-the-art seasonal forecast system, this nonlinearity is shown to imprint itself on T2M forecast error in the conterminous United States in two unique ways: (i) the T2M forecast bias (relative to independent observations) induced by a negative precipitation bias tends to be larger for dry initializations, and (ii) on average, the unbiased root-mean-square error (ubRMSE) tends to be larger for dry initializations. Such findings can aid in the identification of forecasts of opportunity; taken a step further, they suggest a pathway for improving bias correction and uncertainty estimation in subseasonal T2M forecasts by conditioning each on initial soil moisture state.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...