GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1)
  • Das, Himansu  (1)
Material
Publisher
  • MDPI AG  (1)
Language
Years
  • 1
    In: Mathematics, MDPI AG, Vol. 11, No. 8 ( 2023-04-14), p. 1868-
    Abstract: In this paper, an adaptive depth and heading control of an autonomous underwater vehicle using the concept of an adaptive neuro-fuzzy inference system (ANFIS) is designed. The autonomous underwater vehicle dynamics have six degrees of freedom, which are highly nonlinear and time-varying. It is affected by environmental effects such as ocean currents and tidal waves. Due to nonlinear dynamics designing, a stable controller in an autonomous underwater vehicle is a difficult end to achieve. Fuzzy logic and neural network control blocks make up the proposed control design to control the depth and heading angle of autonomous underwater vehicle. The neural network is trained using the back-propagation algorithm. In the presence of noise and parameter variation, the proposed adaptive controller’s performance is compared with that of the self-tuning fuzzy-PID and fuzzy logic controller. Simulations are conducted to obtain the performance of both controller models in terms of overshoot, and the rise time and the result of the proposed adaptive controller exhibit superior control performance and can eliminate the effect of uncertainty.
    Type of Medium: Online Resource
    ISSN: 2227-7390
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704244-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...