GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Israel Journal of Chemistry, Wiley, Vol. 50, No. 1 ( 2010-06-18), p. 109-116
    Abstract: The rate of protein synthesis is about seven and fifteen amino acids per second, in the eukaryotic and the bacterial ribosome, respectively. Hence, a few minutes is required to synthesize a polypeptide of an average length. This is much longer than the time needed for the hydrophobic collapse (folding) to take place. So a polypeptide gets enough time to form its local secondary to tertiary structures cotranslationally and put such segments in proper order while in association with the ribosome, unless something prevents its entire length from folding. As reported earlier, ribosomes from prokaryotes, eukaryotes, and mitochondria act as molds for protein folding, and each mold has a set of recognition sites for all proteins. More specifically, the mold is the peptidyl transferase center (PTC), a part of the large RNA of the large ribosomal subunit. Specific amino acids from different random coil regions in a protein interact with specific nucleotides in the PTC, which brings the entire length of the protein into the small space of the PTC mold. The mold thus helps to stabilize the entropy‐driven collapsed state of the polypeptide. The process also divides the protein into small segments; each segment is connected at two ends with two nucleotides and can fold in the ribosomal environment. The segments dissociate in such a sequence that the organization proceeds hierarchically from the core of the globular protein radially towards the outer surface. Then the protein dissociates from the ribosome in a “folding competent state” which does the final fine tuning in folding outside the ribosome. While the ribosomal contact and release are over in 1–2 minutes in vitro, the fine tuning takes about 5–10 minutes. Release from the ribosome needs no added energy factor from outside, like ATP.
    Type of Medium: Online Resource
    ISSN: 0021-2148 , 1869-5868
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2066481-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biotechnology Journal, Wiley, Vol. 3, No. 8 ( 2008-08), p. 999-1009
    Abstract: In all organisms, the ribosome synthesizes and folds full length polypeptide chains into active three‐dimensional conformations. The nascent protein goes through two major interactions, first with the ribosome which synthesizes the polypeptide chain and holds it for a considerable length of time, and then with the chaperones. Some of the chaperones are found in solution as well as associated to the ribosome. A number of in vitro and in vivo experiments revealed that the nascent protein folds through specific interactions of some amino acids with the nucleotides in the peptidyl transferase center (PTC) in the large ribosomal subunit. The mechanism of this folding differs from self‐folding. In this article, we highlight the folding of nascent proteins on the ribosome and the influence of chaperones etc. on protein folding.
    Type of Medium: Online Resource
    ISSN: 1860-6768 , 1860-7314
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2008
    detail.hit.zdb_id: 2214038-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JGH Open, Wiley, Vol. 5, No. 1 ( 2021-01), p. 20-27
    Abstract: Limited data exist regarding the etiological spectrum of the subset of chronic liver diseases (CLDs) diagnosed in noncirrhotic states in children. Our primary objective was to study the clinicoetiological profile of CLDs detected in noncirrhotic stages in children younger than 12 years of age. The secondary objective was to find the hepatic histological correlation of provisional diagnosis by different ranks of doctors. Methods This was an observational epidemiological study, cross‐sectional in design, conducted in a tertiary‐care setting over a 2‐year period. Results Thirty‐seven cases were enrolled, with a mean ± SD age of 8 ± 4.1 years and a male:female ratio of 1.8:1. Etiologies noted were Wilson disease ( n = 8), autoimmune hepatitis ( n = 4), secondary hemochromatosis ( n = 4), chronic hepatitis B ( n = 3), chronic hepatitis C ( n = 2), non‐alcoholic steatohepatitis ( n = 2), progressive familial intrahepatic cholestasis ( n = 2), extrahepatic biliary atresia ( n = 2), Alagille syndrome ( n = 1), galactosemia ( n = 1), Gaucher disease ( n = 1), Niemann‐Pick disease ( n = 1), and Budd–Chiari syndrome ( n = 1), with an inconclusive diagnosis in five children. Relevant investigations were ordered more frequently by the specialist consultant (SC) and super specialist (SS) combined in comparison with the senior resident (SR) and junior resident (JR) together. ( P = 0.0013). Irrelevance of the tests ordered was significantly higher in the junior tier (JR and SR; SR  〉  JR) in contrast to the senior tier of doctors (SC and SS) ( P 〈  0.01). The clinicohistological correlation of an etiological diagnosis significantly differed between the junior and senior ranks of physicians. We noted that an ideal clinical acumen could help to avoid liver biopsy for etiological diagnosis in 78.3% (29/37) of the study population. Conclusion Interpretation of clinical presentation by the senior set of doctors is preferable, which could obviate the need for liver biopsy regarding diagnosis in a proportion of pediatric CLD patients.
    Type of Medium: Online Resource
    ISSN: 2397-9070 , 2397-9070
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2919809-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Organometallic Chemistry, Wiley, Vol. 34, No. 4 ( 2020-04)
    Abstract: Four new zinc (II) complexes [Zn (HL 1 H)Br 2 ] (1), [Zn (HL 1 H)Cl 2 ] (2), [Zn 2 (HL 2 )Br 3 ] (3), and [Zn (HL 2 )Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H 2 L 1 = 4‐bromo‐2‐{[2‐(2‐hydroxyethylamino)‐ethylimino]‐methyl}‐6‐methoxyphenol, H 2 L 2 = 4‐bromo‐2‐{[3‐(2‐hydroxyethylamino)propylimino]methyl}‐6‐methoxyphenol), differing in one ‐CH 2 ‐ unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X‐ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile ( ΔH o , ΔS o and ΔG o ) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 10 4 M −1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 〉 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.
    Type of Medium: Online Resource
    ISSN: 0268-2605 , 1099-0739
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1480791-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...