GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 112, No. D16 ( 2007-08-21)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 20 ( 2010-10-15), p. 5349-5374
    Abstract: The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2007
    In:  Atmospheric Chemistry and Physics Vol. 7, No. 21 ( 2007-11-14), p. 5625-5637
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 7, No. 21 ( 2007-11-14), p. 5625-5637
    Abstract: Abstract. One of the most significant events in the evolution of the ozone layer over southern mid-latitudes since the late 1970s was the large decrease observed in 1985. This event remains unexplained and a detailed investigation of the mechanisms responsible for the event has not previously been undertaken. In this study, the 1985 Southern Hemisphere mid-latitude total column ozone anomaly is analyzed in detail based on observed daily total column ozone fields, stratospheric dynamical fields, and calculated diagnostics of stratospheric mixing. The 1985 anomaly appears to result from a combination of (i) an anomaly in the meridional circulation resulting from the westerly phase of the equatorial quasi-biennial oscillation (QBO), (ii) weaker transport of ozone from its tropical mid-stratosphere source across the sub-tropical barrier to mid-latitudes related to the particular phasing of the QBO with respect to the annual cycle, and (iii) a solar cycle induced reduction in ozone. Similar QBO and solar cycle influences prevailed in 1997 and 2006 when again total column ozone was found to be suppressed over southern mid-latitudes. The results based on observations are compared and contrasted with analyses of ozone and dynamical fields from the ECHAM4.L39(DLR)/CHEM coupled chemistry-climate model (hereafter referred to as E39C). Equatorial winds in the E39C model are nudged towards observed winds between 10° S and 10° N and the ability of this model to produce an ozone anomaly in 1985, similar to that observed, confirms the role of the QBO in effecting the anomaly.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2007
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 8, No. 9 ( 2008-05-09), p. 2519-2535
    Abstract: Abstract. A statistical framework to evaluate the performance of chemistry-climate models with respect to the interaction between meteorology and column ozone during northern hemisphere mid-winter, in particularly January, is used. Different statistical diagnostics from four chemistry-climate models (E39C, ME4C, UMUCAM, ULAQ) are compared with the ERA-40 re-analysis. First, we analyse vertical coherence in geopotential height anomalies as described by linear correlations between two different pressure levels (30 and 200 hPa) of the atmosphere. In addition, linear correlations between column ozone and geopotential height anomalies at 200 hPa are discussed to motivate a simple picture of the meteorological impacts on column ozone on interannual timescales. Secondly, we discuss characteristic spatial structures in geopotential height and column ozone anomalies as given by their first two empirical orthogonal functions. Finally, we describe the covariance patterns between reconstructed anomalies of geopotential height and column ozone. In general we find good agreement between the models with higher horizontal resolution (E39C, ME4C, UMUCAM) and ERA-40. The Pacific-North American (PNA) pattern emerges as a useful qualitative benchmark for the model performance. Models with higher horizontal resolution and high upper boundary (ME4C and UMUCAM) show good agreement with the PNA tripole derived from ERA-40 data, including the column ozone modulation over the Pacfic sector. The model with lowest horizontal resolution does not show a classic PNA pattern (ULAQ), and the model with the lowest upper boundary (E39C) does not capture the PNA related column ozone variations over the Pacific sector. Those discrepancies have to be taken into account when providing confidence intervals for climate change integrations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2008
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2006
    In:  Geophysical Research Letters Vol. 33, No. 3 ( 2006)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 33, No. 3 ( 2006)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2006
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2006
    In:  Geophysical Research Letters Vol. 33, No. 6 ( 2006)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 33, No. 6 ( 2006)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2006
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2008
    In:  Geophysical Research Letters Vol. 35, No. 10 ( 2008-05)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 35, No. 10 ( 2008-05)
    Abstract: Recent observations show a distinct cooling of the tropical lower stratosphere, and chemistry‐climate models (CCMs) suggest a link to a strengthening tropical upwelling, arguably related to increases in greenhouse gas concentrations from anthropogenic activity. The present study explores the strengthening of tropical upwelling by comparing ensemble realisations of two different transient scenarios with the CCM E39/C. Both scenarios share the same boundary conditions, including concentrations of ozone‐depleting substances, but differ in their climate forcing via prescribed sea surface temperatures (SSTs) and well‐mixed greenhouse gas concentrations. In the summer hemisphere tropics, higher SSTs amplify deep convection locally and hence the convective excitation of quasi‐stationary waves. These waves propagate upward through the region of easterly winds while dissipating, but still carry enough of the signal into the low‐latitude lower stratosphere to induce an anomalous low‐latitude Brewer‐Dobson (BD) cell. The transport change in turn increases the flux of ozone‐poor tropospheric air into the tropical lower stratosphere.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 5, No. 8 ( 2005-08-11), p. 2121-2145
    Abstract: Abstract. A transient simulation with the interactively coupled chemistry-climate model (CCM) E39/C has been carried out which covers the 40-year period between 1960 and 1999. Forcing of natural and anthropogenic origin is prescribed where the characteristics are sufficiently well known and the typical timescales are slow compared to synoptic timescale so that the simulated atmospheric chemistry and climate evolve under a "slowly" varying external forcing. Based on observations, sea surface temperature (SST) and ice cover are prescribed. The increase of greenhouse gas and chlorofluorocarbon concentrations, as well as nitrogen oxide emissions are taken into account. The 11-year solar cycle is considered in the calculation of heating rates and photolysis of chemical species. The three major volcanic eruptions during that time (Agung, 1963; El Chichon, 1982; Pinatubo, 1991) are considered. The quasi-biennial oscillation (QBO) is forced by linear relaxation, also known as nudging, of the equatorial zonal wind in the lower stratosphere towards observed zonal wind profiles. Beyond a reasonable reproduction of mean parameters and long-term variability characteristics there are many apparent features of episodic similarities between simulation and observation: In the years 1986 and 1988 the Antarctic ozone holes are smaller than in the other years of that decade. In mid-latitudes of the Southern Hemisphere ozone anomalies resemble the corresponding observations, especially in 1985, 1989, 1991/1992, and 1996. In the Northern Hemisphere, the episode between the late 1980s and the first half of the 1990s is dynamically quiet, in particular, no stratospheric warming is found between 1988 and 1993. As observed, volcanic eruptions strongly influence dynamics and chemistry, though only for few years. Obviously, planetary wave activity is strongly driven by the prescribed SST and modulated by the QBO. Preliminary evidence of realistic cause and effect relationships strongly suggests that detailed process-oriented studies will be a worthwhile endeavour.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2005
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...