GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Daly, Laura  (2)
  • Sansone, Pasquale  (2)
  • Vidone, Michele  (2)
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-02-09)
    Abstract: The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133 hi /ER lo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133 hi /ER lo /IL6 hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133 hi /ER lo /OXPHOS lo . These cells exit metabolic dormancy via an IL6-driven feed-forward ER lo -IL6 hi -Notch hi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133 hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133 hi /ER lo cells mediating metastatic progression, which is sensitive to dual targeted therapy.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-236-LB-236
    Abstract: The mechanisms of metastatic progression from hormonal therapy (HT)-induced tumour dormancy to hormonal therapy resistance is largely unknown in luminal breast cancer. Analysis of clinical specimens revealed the enrichment of CD133hi/ERlo cancer cells in primary tumours following neo-adjuvant endocrine therapy and in HT refractory metastatic disease. We developed spontaneous experimental models of metastatic luminal breast cancer and determined that endocrine therapy can promote the generation of HT- resistant, self-renewing CD133hi/ERlo/IL6hicells. Dual pharmacological inhibition of IL6R-IL6 (tocilizumab) and ER (HT) abrogated the establishment of CD133hi/ERlo/IL6hi cancer stem cells (CSCs), restoring endocrine sensitivity to hormone-refractory metastatic disease, in both experimental and patient-derived endocrine-resistant bone metastasis. Hormonal therapy, initially abrogated oxidative phosphorylation (OXPHOS) generating dormant (self-renewal deficient-CD133hi/ERlo/OXPHOSlo) cancer cells, These cells exited metabolic dormancy via an IL6 driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. Importantly, the inhibition of IL6R/IL6-Notch pathways switched the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy. Citation Format: Pasquale Sansone, Ceccarelli Claudio, Marjan Berishaj, Qing Chang, Rajasekhar Vinagolu, Fabiana Perna, Robert Bowman, Michele Vidone, Laura Daly, Jennifer Nnoli, Donatella Santini, Taffurelli Mario, Natalie Shih, Michael Feldman, Jun James Mao, Christopher Colameco, Jinbo Chen, Angela DeMichele, Nicola Fabbri, John Healey, Monica Cricca, Giuseppe Gasparre, David Lyden, Massimiliano Bonafe, Jacqueline F. Bromberg. Self-renewal of CD133hi cells by IL6/Notch3 signaling regulates endocrine resistance in metastatic breast cancers. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-236.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...