GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 13 ( 2015), p. 134705-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 13 ( 2015), p. 134705-
    Abstract: Self-propellant Janus microsphere is a special class of active particles with a regular shape and irregular surface characteristic. With the self-propulsion of 2 μm diameter Pt-SiO2 Janus microsphere near the wall, we have measured the relationship of self-propellant velocity VJanus versus the observed time Δtobs. A diffusiophoretic force-dominated motion, which can be deemed as a quasi-1 D motion with the characteristics of both force free and torque free, is distinguished from the entire motion process. At the same time, it is also observed that the Janus microsphere is deflected about the vertical direction with an angle ψ. The deflection angle ψ is found to decrease with the increase of H2O2 concentration in the solution. For the 2.5%-10% H2O2 solution in this experiment, the angle ψ ranges from 20° to 7° approximately. A numerical model, involving viscous force, diffusiophoretic force and the effective gravity, is created with a reference frame, this quasi-1 D self-propellant motion can be solved to satisfy the conditions of the force and torque balance simultaneously. We have studied the changes of angle ψ and separation distance δ of the microsphere from the substrate under different conditions, including the concentrations of H2O2 solution, the material density, and the diameter of the microsphere. For the self-propulsion velocity VJanus and the deflection angle ψ, numerical results show good agreement with the published experimental observation results. Moreover, it is found that the lower density or the smaller diameter of the microsphere will generate the smaller distance δ, while the higher concentration of H2O2 in the solution will result in a larger distance δ. The predicted δ is 2-8 μm. With the obtained data, we further discuss the effect of near wall on the characteristic time τR of rotational diffusion of the Janus microsphere. Because the predicted values of δ are relative high, the near wall effect can be neglected, indicating that this effect should not be a significant factor to cause a big discrepancy of τR in different references. The present work will be beneficial to the understanding of the mechanism of self-propulsion and the development in its potential applications.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 22 ( 2016), p. 220201-
    Abstract: A Janus particle is a general term for a non-uniform particle that has different properties on different sides of particle. For a Pt-SiO2 type of Janus microsphere, Pt side serves as the catalysis surface to decompose H2O2 solution, leading to the self-propulsion motion of particle. In this paper, the relevant experimental phenomena in two driven modes are compared first. The results show that under the same concentration of solution, the microsphere with a diameter of about 1 m experiences self-diffusiophoresis propulsion; whereas, the one with an about 20 m diameter experiences bubble self-propulsion. Significant differences in motional trajectory and propulsion velocity are found between them. Then, the dominated physical factors are analyzed and the multi-field coupling numerical model is constructed based on the simplified force balance analysis. Subsequently, the velocity field distribution and O2 concentration distribution around Janus microsphere are also studied. According to these studies, we explain the position and size of the bubble generated. Further more, we infer that the wall slip coefficient is a key matching parameter in the numerical model, and two slip coefficients with a difference of an order of magnitude are given corresponding to the two types of self-propulsion modes. Then we explain the possible mechanism for the changes of wall slip coefficient under different particle sizes. The present study is beneficial to the in-depth exploration of the self-propulsion mechanism and also provides the theoretical foundation for improving the performance of self-propellant device.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2017
    In:  Acta Physica Sinica Vol. 66, No. 8 ( 2017), p. 084703-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 8 ( 2017), p. 084703-
    Abstract: Studies of the driving force of the self-propulsion Janus particles are very important in the fields of micro-power and nano-motor. In this paper, we choose the micron Pt-SiO2-type Janus particle as a research object, which is propelled by self-generated concentration gradient in the dilute solution of H2O2, focusing on the self-propulsion of the single particle. According to the force analysis of the Janus particle, the surface force can be decomposed into the viscous resistance of the fluid, the Brownian force derived from the molecular thermal fluctuation, and the diffusiophoresis caused by the diffusion of the solute component. The main aim of this paper is to find the way to accurately simulate the diffusiophoresis generated by the huge concentration gradient on a microscale. The lattice Boltzmann method (LBM) is a modern mesoscopic method based on the microscopic particle characteristics of the fluid, which makes it more intuitive to deal with the interaction between the fluid and solid. It is more advantageous than the traditional numerical method in the description of this micro-interface dynamic problem, i.e., the self-propulsion of Janus particle. On a certain time scale, when the Janus particle shows the directional motion, the influence of the Brownian force can be ignored. Thus, the analytical process can be simplified. Based on the momentum theorem, the method of calculating the diffusiophoresis produced by concentration diffusion is proposed. We introduce the momentum exchange in the half-way bounce-back scheme of LBM into the model of the multicomponent diffusion and reaction. Through counting the surface force we can obtain the diffusiophoresis acting on the Janus particle. Moreover, this diffusiophoresis model is modified by comparing the experimental fluid resistance with simulated one. This comparision verifies the validity of the diffusiophoresis model. Then, the analysis of the variation of diffusiophoresis proves that the value of diffusiophoresis is independent of the fluid velocity. Through the further application of this model, the different shapes of Janus particles with the same volume are compared in simulations. The results show that the self-diffusiophoresis is mainly determined by the axial projection area. In addition, the reaction area of the particle also affects the value of the diffusiophoresis.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2017
    In:  Acta Physica Sinica Vol. 66, No. 16 ( 2017), p. 164702-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 16 ( 2017), p. 164702-
    Abstract: Collapse of a confined bubble is the core problem of bubble dynamics. The recent study has shown that the collapse of macroscopic bubble may drive the motion of suspended particle with the similar size, but, there has still been a lack of the relevant study on a microscale. In the experiment about the bubble driven micro-motor, the locomotion of motor pushed by microjetting has been noticed. However, due to the limitation of experimental conditions, it is difficult to reveal the details of propulsion mechanism. In this paper, the volume of fluid based numerical method is adopted to simulate the interaction process between a collapsing microbubble and the suspended particle nearby. The spatial distribution and the time evolution of flow field are obtained, and the velocity that the micromotor could be achieved is deduced by integrating the impulsive force. The results show that when the bubble size is fixed, the interaction force is inversely proportional to the size of microparticle and the gap between microparticle and bubble. The Kelvin impulse theorem is used to clarify the difference between the interaction on a macroscopic scale and that on a microscopic scale. This study not only extends the scope of cavitation dynamics, which reveals the characteristics of interaction between bubble and particle on a microscale, but also is significant for improving the efficiency of self-propelled micro-motor.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...